
SIGNAL PROCESSING I

Introduction to Matlab

MATLAB is an interactive, matrix-based system for scientific and engineering numeric
computation and visualization. Its strength lies in the fact that complex numerical problems can be
solved easily and in a fraction of the time required by a programming language such as Fortran or
C. Matlab It has its own script language. This language it is very easy to use. Another advantages, is
connected with the fact simple programming capability, MATLAB can be easily expanded to create
new commands and functions. You can easily and quickly build complex algorithms, using
elements such as filters (eg. Low-pass filter, high-pass filter, band (reject) filter, adaptive filers etc),
Transform (eg. Wavelet, Fourier, Hough and many others).

1. Introduction to Matlab script language.

1.1 Basics of language: variables, arrays, matrix, mathematical
operations...

Variables:

variable_name = value;

Examples:

• integer_number = 2;
• integer_number = -25;
• integer_number = 10e5;
• real_number = 3.14;
• real_number = -0.75;
• real_number = 0.1e5;
• complex_number = 1+2i;
• complex_number = 10-i;
• String_vaeiable = 'some text';

To display value of variable just type name of this variable:

>>integer_number

>> integer_number =

ans =
2

Arrays and Matrix:

array_name = [value1, value2, … ,valueN];

array_name = zeros(rows,cols); % create matrix with rows and cols and fill zeros

array_name = ones(rows,cols); % create matrix with rows and cols and fill ones.

How to use it ?

To view the entire array just type name of this array

A = [1 2 3 4 5];

>>A

A =
1 2 3 4 5

To display the specified item (s) of the matrix, enter the coordinates of this item:
Warning! Matlab arrays and matrices are numbered from 1 (not 0)!

matrix = [1 2 3 ; 4 5 6 ; 7 8 9]; %create 3x3 matrix (as below)

1 2 3
4 5 6
7 8 9

matrix(row,cols) %display element on position row, cols

>>matrix(1,1) =

ans = 1;

>>matrix(1,3) =

ans = 3;

>>matrix(3,1) =

ans = 7;

To display the specified row just type:

>>matrix(1,:) =

ans = 1 2 3;

>>matrix(1,1:2) =

ans = 1 2 ;

To display the specified col just type:

>>matrix(2:3,1) =

ans =
4
7

One way to enter a n-dimensional array (n>2) is to concatenate two or more (n-1)-dimensional

arrays using the cat command. For example, the following command concatenates two 3x2 arrays

to create a 3x3x2 array:

>> C = cat(3,[1,2;3,4;5,6],[7,8;9,10;11,12])
C(:,:,1) =
 1 2
 3 4
 5 6
C(:,:,2) =
 7 8
 9 10
 11 12

Transpose of Array / Matrix:

>>transpose_matix = matrix'

ans =

1 4 7
2 5 8
3 6 9

Basic mathematical operation (small part of Matlab operatos...):

Let assume that:
a = 2
b = 3
d = 10+6i;

Then:

>>a+b

ans =
5;

Similarly behave other operators:
- minus
* multiply

/ divide
^ - power (ex. 5^3)
<> - relational operation
| - logical OR
& -logical AND
! -negation (logical NOT)
== -equality

mod(a,b) – modulo
abs(a) - absolute value
roud(a) - round to nearest decimal or integer
ceil(a) - round toward positive infinity
sin() - sine of argument in radians

and...
asin(), cos(), ascos(), tan(), atan()...........

exp() - Exponential
log() - Natural logarithm
log10() - Common logarithm (base 10)
log2() -Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
sqrt() - Square root

compex numbers:

 >>complex(d)
ans =

10.0000 + 6.0000i

 >>real(d) %real part
ans =

10.0000

 >>imag(d) %imaginary par
ans =

6.0000i

Arrays and Matrix Basic Operations:

Let assume that:
A = [1 2 3];
B = [4 5 6];

>>A+B
ans =

4 7 9

>>A-B
ans =

-2 -3 -3

>>A+B
ans =

4 7 9

>>A.*B %multiply value by value
ans =

3 10 18

>>A*B
Error ! Matrix dimensions must agree!
Buy, we can transpose own array...

>>A.*B'
ans =

31.

>>sum(A) %sum of all elements of A
ans =

6

>>sum(A(1:2)) %sum of all elements on position (1,1) and (1,2) of A
ans =

3

TableA = [1:100000] %Create table from 1 do 100000.

length_table = 1000;
TableA = [1:length_table] %Create table from 1 do 1000.

Control Flow

Example of if-elseif-else structure. Command1 is executed only if condition1 is satisfied.
Otherwise, if condition2 is satisfied, the command2 is executed.
If any condition are satisfied, the command3 is executed.
(The number of if-else is unlimited)

if condition1

command1

elseif condition2

command2

else

command3

end

Example of for loop:

for variable=begin : ratio : endCondition
…
end

begin – start loop value
ratio – tell how “variable” will be change on each iteration (increase by 1,2,.... or decrease by
1,2,...)
endCondition – loop stop condition1

examples:

for x=1: 1 : 5
x
end

result:

1
2
3
4
5

for x=1: 2 : 5
x
end

result:

1
3
5

for x=1: -1 : 5
x
end

result:

1
0
-1
-2
-3
-4
-5

Example of while loop

x = 5;
while(x>0) %stop loop condition

x
x = x – 1;

end

result:

5
4
3
2
1

Until stop loop condition isn't satisfied loop is executed

Warning!
We cannot use Incrementation and decrementation operator !

Own function

function [outPar1,outPar2,...,outParN] = functionName(inputPar1,inputPar2,...,inputParN)
…
end

inputPar1,inputPar2,...,inputParN - inputParameters
outPar1,outPar2,...,outParN – Output parameters
functionName – our function name

Function code should be write on separate file (and file name should be identical as function name)
eg. add.m (".m" is Matlab script file extension, sometimes it's called as m-files).

example:

function [out] = add(num1, num2)
out = num1 + num2;
end

>> add(2,5) % calling our function

ans =
7

Ofcorse this is only a smart part of functionality of Matlab.
See also https://www.mathworks.com/help/index.html

https://www.mathworks.com/help/index.html

1.2 Signal Processing - Basic examples and exercises

Generating a simple pdic signal.

%% signal parameters

N=1000; % number of samples

A=5; % amplitude

fx=10; % frequency (in Hz)

fp=1000; % sampling frequency (in Hz)

dt=1/fp; % sampling period

t=dt*(0:N-1); % vector of sampling moments

x=A*sin(2*pi*fx*t); % signal

plot(t,x); grid; title('Signal x(t)'); xlabel('Time [s]');

pause

% calculation of statistical signal parameters:

x_sred1=mean(x), x_sred2=sum(x)/N % average

x_max=max(x) % max value

x_min=min(x) % min value

x_std1=std(x), x_std2=sqrt(sum((x-mean(x)).^2) / (N-1)) % standard deviation

x_eng=dt*sum(x.^2) % signal energy

x_moc=(1/N)*sum(x.^2) % average power

x_skut=sqrt(x_moc) % effective value

Exercises:

1. Create function “sinusSignalGenerate” with parameters:

• samples number

• samples frequency

• signal amplitude

• signal frequency

The output of function should be a array with generated signal.

1.1 Create function for displaying signal (from array).

1.2 Amplitude = 1, frequency = 10KHz, sample frequency = 2000Hz, number of samples = 4000.

• Show result. Whether it is a correct sinusoidal signal ? Why is incorrect ? Do you can

correct this ?

1.3 Generate and show signals:

• Amplitude = 2, frequency = 1000Hz, signal Time = 2s

• Amplitude = 5, frequency = 1500Hz, signal Time = 1s

• Amplitude = 1, frequency = 25000Hz, signal Time = 0.5s

What should be the parameters (number of samples and samples frequency) for each signal?

2. Generate and show signals (adjust number of samples and samples frequency for second signal):
• Amplitude = 1, frequency = 50Hz, signal Time = 2s
• Amplitude = 1, frequency = 100Hz, signal Time = 2s

2.1 Add both signal. Show results.
2.3 Generate and show signals (adjust number of samples and samples frequency for second
signal):

• Amplitude = 1, frequency = 50Hz, signal Time = 2s
• Amplitude = 1, frequency = 10000Hz, signal Time = 2s

2.1 Multiply both signal. Show results.

3. Create function for displaying Fourier spectrum of the signal:

% y – signal, fp – sample rate (frequency sampling)

function FFTspectrum(y,fp)
dt=1/fp;
N = size(y,2);
X = fft(y); % Fast Fourier Transform

df = 1/(N*dt); % basic frequency f0 = df = 1/T = 1/(N*dt)
f = df * (0 : N-1); % more frequencies in the Fourier series

subplot(311); plot(f,real(X)); grid; title('Real(X)'); xlabel('Hz');
subplot(312); plot(f,imag(X)); grid; title('Imag(X)'); xlabel('Hz');
subplot(313); plot(f,abs(X)); grid; title('Abs(X)'); xlabel('Hz');

end

3.1 Show signal from point 2 and 2.3

4. Designing a simple low-pass filter.

% signal – pinput signal
% filterOrder – filter Order
% cutOffFrequency – cut-off frequecny (all signals with a frequency higher than cut-off frequecny
will be suppressed)
% sampligFrequency - samplig Frequency
% filterResponseDisp [true/false] - whether to display the impulse response filter?

function [y] = lowPassFIlter(signal,filterOrder, cutOffFrequency, sampligFrequency,
filterResponseDisp)

% 'N,Fc' – get filter order and samplig frequency to desing filter
d = fdesign,lowpass('N,Fc',filterOrder, cutOffFrequency, sampligFrequency);
designmethods(d);
Hd = design(d);

% if 'filterResponseDisp' is true then show the impulse response filter
if (filterResponseDisp)

fvtool(Hd)
end

end

4.1Using signal from point 2 try to remove (suppressed) all signals with a frequency Higher than
50Hz. Results of removing signal you can check by using signal spectrum (FFT).

	1. Introduction to Matlab script language.
	1.1 Basics of language: variables, arrays, matrix, mathematical operations...
	1.2 Signal Processing - Basic examples and exercises

