Reconstruction of three dimensional scenes

Paweł Pełczyński, Paweł Strumiłło

Problem formulation

Three dimensional automatic scene sensing means capturing shape, appearance and spatial coordinates of real objects.

Shape - geometry of 3D object
Appearance - surface attributes: colour, texture, reflectance

Spatial coordinates - (X, Y, Z) coordinates in 3D
There are methods of 3D scene reconstruction from a set of 2D images

3D scene reconstruction methods

- Stereo image pair matching
- Structure from motion camera image sequence
- Shape reconstruction from shading
- Projection of structured light
- Laser scanning

3

Applications

- Robotics
- Medicine
- Electronic travel aid for the blind
- Product design
- Virtual reality
- Computer games

Robotics - robot vision

Image copied from : http://marsrovers.jpl.nasa.gov

Medical imaging: 3D endoscopic surgery

From: "3D Reconstruction of the operating field for image overlay in 3D-endoscopic surgery" by F. Mourgues, F. Devernay and E. Coste-Maniere

The vOICe travel aid system for blind people

Acoustic code:

- pitch
- object location
- loudness - object brightness

3D object modelling

Copied from the article: "Spatio-Temporal Stereo using Multi-Resolution Subdivision Surfaces" by J. Neumann and Y. Aloimonos

Perspective Transformations

Basic model of the image formation process assumed "pin-hole" camera model

Perspective Transformation

Projection of the world point onto the image plane

Assumptions:

- world and camera coordinate systems are identically aligned
- $Z>\lambda$
$\frac{x_{0}}{\lambda}=-\frac{X}{Z-\lambda}=\frac{X}{\lambda-Z}$
$\frac{y_{0}}{\lambda}=-\frac{Y}{Z-\lambda}=\frac{Y}{\lambda-Z}$
$x_{0}=\frac{\lambda X}{\lambda-Z}$
$y_{0}=\frac{\lambda Y}{\lambda-Z}$
Nonlinear versus Z

Inverse Perspective Transformation

Projection of the image point onto the world point

$$
\begin{aligned}
& X=\frac{x_{0}}{\lambda}(\lambda-Z) \\
& Y=\frac{y_{0}}{\lambda}(\lambda-Z)
\end{aligned}
$$

Two equations three unknowns

Conclusions

Mapping of 3D scene onto the image plane is a many-to-one transformation: image point corresponds to a set of collinear 3D points

The inverse transformation cannot be performed on the basis of a single image

Other cues about distance from a monocular view

Motion

Other cues about distance from a monocular view

Other cues about distance from a monocular view

„Precoded" perception of perspective

Binocular vision

Stereo image acquisition: (epipolar case)

Stereo image acquisition - top view

3D point reconstruction in stereoscopy: Inverse Perspective Transformation

Three equations - three unknowns

Digital image matching: correspondence problem

Digital image matching automatically establishes the correspondence between primitives extracted from two or more digital images depicting at least part of the same scene

Image matching problems:

-selection of primitives for matching

- choice of models for mapping of primitives
-measure of similarity of corresponding primitives
- matching algorithm
- matching strategy

Digital image matching approaches

Local correspondence methods:

-Block matching

- Gradient-based optimisation
-Feature matching

Global correspondence methods:

- Dynamic programming
-Intrinsic curves
- Graph cuts
- Other methods

Digital image matching - concept of disparity

Epipolar constraint reduces correspondence search to 1D problem

here:
$y_{2}=y_{1}$

Metrics in block image matching

-Normalised cross-correlation

- Sum of squared differences SSD
- Normalised sum of squared differences
- Sum of absolute diffrences SAD
-Rank

$$
\sum_{x, y}\left(I_{1}(x, y)-I_{2}(x+d, y)\right)^{2} \rightarrow \min
$$

-Census

89	63	72
67	55	64
58	51	49
Rank		

89	63	72
67	55	64
58	51	49
Census		

Digital image matching - 3D disparity map building

Digital image matching - intersection of disparity map

Outex - University of Oulu Texture Database

Image data for verification of matching algorithms

ground truth disparity image

computed disparity image

Optical flow - projection of 3D movement vector

Perspective transformations apply

The concept of optical flow

Images from:
http://www.cs.otago.ac.nz/research/vision/Research/index.htm/
B.K.P. Horn, B.G. Schunk „Determining Optical Flow", Artificial Intelligence, vol. 17, 1981, pp. 185-203

