Image restoration

Image **restoration** techniques aim at modelling a degradation corrupting the image and inverting this degradation to correct the image so that it is as close as possible to the original.

Image restoration vs. image enhancement

Image enhancement

Heuristic criteria; there is no image degradation model constructed, no mathematical criteria used

Image restoration

Quantitative criterion used; image model and degradation model required

Image degradation model

$$g(x,y) = H[f(x,y)] + \eta(x,y)$$

Image degradation model

Assume H(.) is linear and shift invariant:

$$g(x,y) = \int_{-\infty}^{\infty} \int f(\alpha,\beta)h(x-\alpha,y-\beta)d\alpha d\beta + \eta(x,y)$$

thus for the spectrum domain:

$$G(u,v) = H(u,v) \cdot F(u,v) + N(u,v)$$

Estimating the degradation function

How to estimate the degradation function?

- build a mathematical model of the degradation (example given),
- reproduce the degradation process on a known image,

Degradation estimation example

Assume f(x,y) is linearly shifted during exposure and $x_0(t)$, $y_0(t)$ are coordinates of motion. The degraded image is given by:

$$g(x,y) = \int_{0}^{T} f(x - x_0(t), y - y_0(t)) dt$$

Fourier transform of the degraded image:

$$G(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \exp[-j2\pi(ux+vy)] dx dy$$

Hence:

$$G(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{0}^{T} f(x-x_0(t), y-y_0(t)) dt \right] \exp\left[-j2\pi(ux+vy)\right] dx dy$$

By inverting the order of integration and using Fourier transform property of the displaced function:

$$G(u,v) = F(u,v) \cdot \int_{0}^{T} \exp\left[-j2\pi(ux_0(t) + vy_0(t))\right]dt$$

H(u,v)

Assume the motion is parallel to X axis and it is a liner, uniform motion, i.e. $x_0 = At/T$ and $y_0 = 0$:

$$H(u,v) = \int_{0}^{T} \exp\left[-j2\pi u x_{0}(t)\right] dt = \int_{0}^{T} \exp\left[-\frac{j2\pi u At}{T}\right] dt =$$

$$= \frac{T}{\pi u A} \sin(\pi u A) e^{-j\pi u A}$$

Note that H(u,v) has zeros (!) for u=i/A, where i is an integer number.

Zeros: u=i/A=0.313, 0.626,

f(x,y) g(x,y)

Source image N*N =256*256

Degraded image, shift: A=1/8*N=32

Inverse filtering

$$G(u,v) = H(u,v) \cdot F(u,v) + N(u,v)$$

Spectrum of the source image can be estimated from:

$$\hat{F}(u,v) = \frac{1}{H(u,v)} \cdot G(u,v) = F(u,v) + \frac{1}{H(u,v)} \cdot N(u,v)$$
Inverse filter

Numerical instability for u, v for which $H(u,v)\approx 0$; i.e., for zeros of H(u,v) and frequencies for which N(u,v) > F(u,v).

The Wiener filter

The Wiener filter is given by:

$$\hat{F}(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + \gamma \frac{S_{\eta}(u,v)}{S_f(u,v)}} \cdot G(u,v) = W(u,v) \cdot G(u,v)$$

where: $S_f(u,v)$ - image power spectral density, $S_{\eta}(u,v)$ - noise power spectral density.

$$|H(u,v)|^2 = H^*(u,v) \cdot H(u,v)$$

The Wiener filter

The parametric Wiener filter:

$$\hat{F}(u,v) = \frac{1}{H(u,v)} \cdot \frac{|H(u,v)|^2}{|H(u,v)|^2 + \gamma \frac{S_{\eta}(u,v)}{S_f(u,v)}} \cdot \frac{G(u,v)}{= K}$$

- γ adjustable factor,
- for $S_{\eta}(u,v)\approx 0$ or $K\rightarrow 0$ the Wiener filter is an inverse filter,
- for $K \rightarrow \infty$ the Wiener filter becomes a low-pass filter.

The Wiener filter

If $S_f(u,v)$ and $S_{\eta}(u,v)$ are unknown, the Wiener filter can be approximated by the formula:

$$\hat{F}(u,v) = \frac{1}{H(u,v)} \cdot \frac{|H(u,v)|^2}{|H(u,v)|^2 + K} \cdot G(u,v)$$

where $K \in \mathbb{R}^+$.

In practice, $K \sim \sigma^2$, where σ^2 is the noise variance that is easy to estimate.

Wiener filter spectral characteristics

An image and its spectrum

Degraded image (blur+noise)

Inverse filter

Wiener filter

Cross-Correlation Used To Locate A Known Turget in an Image Direction

MATLAB

```
x=imread('text.tif');
                                %load image
figure(1),imshow(x);
                                %show image
N=256;
M=7:
                                % filter order
hg=fspecial('average',M);
hhg=zeros(N,N);
hhg(N/2-(M-1)/2:N/2+(M-1)/2, N/2-(M-1)/2:N/2+(M-1)/2)=hg; %filter mask image
y=filter2(hg,x);
                                %low-pass filtering
y=y+0.001*randn(256,256);
figure(2),imshow(y);
Y=fft2(y);
                                %FFT of the degraded image
X=fft2(x);
                                %FFT of the source image
                                %FFT of the low-pass impulse response
Hg=fft2(hhg);
%-----spectra plots -----
figure(3),imshow(log(abs(fftshift(X)))+1,[]);
figure(4),imshow(log(abs(fftshift(Y)))+1,[]);
figure(5),imshow(log(abs(fftshift(Hg)))+1,[]);
Xp=Y./Hq;
                                 %inverse filtering
xp=abs(ifft2(Xp));
                                 %IFFT
figure,imshow(fftshift(xp),[]);
```

UIL FL

Example of interactive image restoration

Geometric image distortions

Assume image pixel coordinates (x,y) undergo geometric distortions. A new image g(x',y') is obtained with coordinates defined as:

$$x' = r(x, y)$$
$$y' = s(x, y)$$

eg. for r(x,y) = x/2 and s(x,y)=y/2 image size is reduced by a factor of 2.

Spatial transformation functions r(x,y) i s(x,y) can be estimated from a limited number of **tie** points eg. 16×16 pixels distributed regularly in the image.

© IE PŁ

Distortion functions r(x,y) i s(x,y) can be approximated e.g. by second order polynomials:

$$\begin{cases} r'(x, y) = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 xy + a_5 y^2 \\ s'(x, y) = b_0 + b_1 x + b_2 y + b_3 x^2 + b_4 xy + b_5 y^2 \end{cases}$$

Hence, 12 coeffcients a0, a1,..., a5 and b0, b1,..., b5 need to be determined.

Optimum polynomial coefficients can be calculated from:

$$\begin{cases} \varepsilon_r = \sum_{k=1}^K (r'(x, y) - r(x_k, y_k))^2 \\ \varepsilon_s = \sum_{k=1}^K (s'(x, y) - s(x_k, y_k))^2 \end{cases}$$

Samples taken for the tie points K>=6

Coordinates after correction:

$$\begin{cases} x'' = x' - r'(x', y') \\ y'' = y' - s'(x', y') \end{cases}$$

Image geometrically distorted

Corrected image

Examples of geometric distortions

Correction of geometric distortions - examples

© Copyright 2005 Altostorm Software