

Fourier transform

Joseph Fourier has put forward an idea of representing signals by a series of harmonic functions

Fourier transform - example

Fourier transform - example

 $|F(\omega)|=?$

4

Fourier transform - example

Why do we convert images (signals) to spectrum domain?

6

Why do we convert images to spectrum domain?

- 1. For **exposing image features** not visible in spatial domain, eg. periodic interferences
- 2. For achieving more compact image representation (coding), eg. **JPEG**, **JPEG2000**
- 3. For designing digital filters
- 4. For fast processing of images, eg. **digital filtering of images** in spectrum domain

1. Detection of image features, eg. periodic interferences

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx dy \quad \text{forward}$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv \quad \text{inverse}$$
Euler equations?
$$\cos \omega_0 t = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) \quad \sin \omega_0 t = \frac{1}{2} \int_{-\infty}^{\infty} \left(e^{j\omega_0 t} - e^{-j\omega_0 t} \right)$$

P. Strumiłło, M. Strzelecki

9

2*j*

Amplitude and phase spectrum of the Fourier transform of images

$$F(u,v) = |F(u,v)| e^{j \arg[F(u,v)]}$$

$$|F(u,v)| = \sqrt{Re[F(u,v)]^2 + Im[F(u,v)]^2}$$

$$arg[F(u,v)] = \arctan\frac{Im[F(u,v)]}{Re[F(u,v)]}$$

The Discrete FT of images - I

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-2\pi j \frac{ux}{N}} e^{-2\pi j \frac{vy}{N}} = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-2\pi j \frac{(ux+vy)}{N}}$$

$$dla \quad u,v = 0,1,...,N-1$$
Forward - FFT
$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{2\pi j \frac{ux}{N}} e^{2\pi j \frac{vy}{N}} = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{2\pi j \frac{(ux+vy)}{N}}$$

$$dla \quad x,y = 0,1,...,N-1$$
Inverse - IFFT
$$e^{jk\omega_0 t} = e^{\frac{jk2\pi t}{T}} = e^{\frac{2\pi jkt}{T}} = e^{\frac{2\pi jkt}{N\Delta t}} = e^{2\pi j \frac{kn}{N}}$$

11

The Discrete FT of images - II

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux+vy)/N}$$

$$dla \quad u,v = 0,1,...,N-1$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{+j2\pi(ux+vy)/N}$$

$$dla \quad x, y = 0,1,...,N-1$$

Number of computations
for 512x512 image?

1D computational example

$$f(x) = [1 \ 3 \ 4 \ 4] \qquad N = 4$$
$$F(u) = \frac{1}{N} \sum_{x=0}^{x=3} f(x) e^{-j2\pi u x/N}$$

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$F(0) = \frac{1}{N} \sum_{x=0}^{N-1=3} f(x) e^{-j2\pi 0 x/N} = \frac{1}{4} [f(0) + f(1) + f(2) + f(3)] =$$

$$= \frac{1}{4} [1 + 3 + 4 + 4] = 3$$

$$F(1) = \dots = \frac{1}{4} (-3 + j)$$

$$F(2) = \dots = -\frac{1}{4} (2)$$

$$F(3) = \dots = -\frac{1}{4} (3 + j)$$

13

Cosine function Fourier spectrum

Let us move to 2D

Let us move to 2D

P. Strumiłło, M. Strzelecki

Fourier amplitude spectrum

18

r. suumiłło, M. Strzelecki

Detection of periodic distortions

P. Strumiłło, M. Strzelecki

Removing periodic distortions

Fourier phase spectrun of an image

Properties of the two-dimensional Fourier transform

Separability:

Computation of the 2-D Fourier transform as a series of 1-D transforms

Separability of the 2-D Fourier transform

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux+vy)/N}$$

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} e^{-j2\pi ux/N} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi vy/N}$$

$$F(u,v) = \frac{1}{N^2} \sum_{x=0}^{N-1} F(x,v) e^{-j2\pi ux/N}$$

P. Strumiłło, M. Strzelecki

Properties of the two-dimensional Fourier transform

Convolution:

$$\mathcal{F}\left\{f(x,y) \; g(x,y)\right\} = F(u,v) * G(u,v)$$

$$\mathcal{F}\left\{f(x,y) \ast g(x,y)\right\} = F(u,v) \ G(u,v)$$

This property is useful in designing digital image filters.

2-D convolution of discrete functions

f(i,j), g(i,j) - dicretete 2-D functions of period NxN

increase periods of f(i,j) and g(i,j) up to M=2N-1:

$$f_{e}(i,k) = \begin{cases} f(i,k) & 0 \le i,k \le N-1 \\ 0 & N \le i,k \le M-1 \end{cases} \quad g_{e}(i,k) = \begin{cases} g(i,k) & 0 \le i,k \le N-1 \\ 0 & N \le i,k \le M-1 \end{cases}$$

$$f_e(i,k) * g_e(i,k) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} f_e(m,n) g_e(i-m,k-n)$$

29

Correlation of 2-D discrete functions

f(i,j), g(i,j) – dicretete 2-D functions of period *NxN* Increase the periods as for convolution:

$$f_e(i,k) \circ g_e(i,k) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} f_e(m,n) g_e(i+m,k+n)$$

Periodicity of the FT

$$F(u,v)=F(u+N,v)=F(u,v+N)=F(u+N,v+N)$$

If f(x,y) is a real valued function then:

$$F(u,v)=F^{*}(-u,-v)$$

and:

$$|F(u,v)| = |F(-u,-v)|$$

It is assumed the transformed image is a periodic function of period (N, N)

Translation in the spectral domain

$$f(x, y) \exp\left[\frac{j2\pi(u_0 x + v_0 y)}{N}\right] \Leftrightarrow F(u - u_0, v - v_0)$$

This Fourier property is known as the modulation theorem.

Translation in the spectral domain

Translation in the spectral domain

$$f(x, y) \exp\left[\frac{j2\pi(u_0x + v_0y)}{N}\right] \Leftrightarrow F(u - u_0, v - v_0)$$

for $u_0 = v_0 = \frac{N}{2} \iff F\left(u - \frac{N}{2}, v - \frac{N}{2}\right)$
$$f(x, y) \exp\left[\frac{j2\pi(u_0x + v_0y)}{N}\right] =$$

$$= f(x, y) \exp[j\pi(x + y)] = f(x, y)(-1)^{x+y}$$

Translation in spectral domain

Rotation $\theta_0 = 0^\circ$ $\theta_0 = 45^\circ$ $f(r, \ \theta + \ \theta_0) \iff F(\omega, \ \phi + \ \theta_0)$ 38

39

Scaling

$$\mathcal{J}{f(ax,by)} = |ab|^{-1} F(u/a, v/b) \qquad a,b \in \mathbb{R}$$

P. Strumiłło, M. Strzelecki

P. Strumiłło, M. Strzelecki

Average value

Fourier transform of an image - examples

Discrete Fourier Transform

Basis functions for 30-point Fourier transform (sine component)

Fourier transform of an image - examples

Fast Fourier Transform, FFT (succesive doubling method)

If $N=2^n$, then $N=2^*M$ and one can show that:

$$W_{M} = e^{-j2\pi/M}$$

$$F_{even}(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(2x) W_{M}^{ux}, \quad F_{odd}(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(2x+1) W_{M}^{ux}$$

$$F(u) = \frac{1}{2} [F_{even}(u) + F_{odd}(u) W_{2M}^{u}], \quad u = 0, 1, ..., M - 1$$

$$F(u+M) = \frac{1}{2} [F_{even}(u) - F_{odd}(u) W_{2M}^{u}], \quad u = 0, 1, ..., M - 1$$

46

Fast Fourier Transform, FFT

FFT is an efficient algorithm for computing Discrete Fourier Transform

FFT exploits periodicity of complex sinusoidals:

$$e^{j2\pi kn/N} = (e^{j2\pi/N})^{kn} = W^{kn}$$
 where: $W = e^{j2\pi/N}$

for:
$$n = 7, k = 5, N = 32$$

$$W^{(5)(7)} = W^{35} = (W^{32})^3 = W^3$$
$$gdy\dot{z}: W^{(k+N)n} = W^{k(n+N)} = W^{kn}$$

Comparison of TF and FFT

Ν	\mathbf{N}^{2} (FT)	NlogN	Advantage
		(FFT)	N/logN
16	256	64	4
256	65535	2048	32
512	262144	4608	64
2048	~4e6	22528	186

Detecting periodic image content

49

Discrete Cosine Transform (DCT)

$$F(u,v) = \frac{2}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} f(x,y) \cos\left[\frac{\pi u(2x+1)}{2N}\right] \cos\left[\frac{\pi v(2y+1)}{2N}\right]$$

for:
$$u, v = 1, 2, \dots, N-1$$

Fourier spectrum of a real valued and symmetric function has real valued coeffcients, ie. only those associated with the cosine components of the Fourier series

DCT basis functions

DCT basis functions for 8x8 image blocks

51

Discrete Cosine Transform (DCT)

'autumn' image

image cosine transform

The JPEG image compression standard is based on DCT

Other image transforms

- the Karhunen-Loeve transform equivalent to the PCA (*Principal Component Analysis*)
- the wavelet transform is used in JPEG-2000 image coding standard

Other image transforms

