Region (shape) representation

Shape Features

Topological

- connectivity
- Euler number
- number of holes
- skeleton

Geometric

- perimeter
- area
- max-min radii
- roundness
- symmetry

Moment-based

- centre of mass
- X, Y Feret
- bounding rectangle
- best-fit ellipse

Pixel neighbourhood on a grid

Direct neighbour

(D-neighbour) of $x(i, j)$: pixels that share common sides with $x(i, j)$,
i.e., $[0,2,4,6]$.

Non-direct neighbours

(N -neighbour) of $\mathrm{x}(\mathrm{i}, \mathrm{j})$: pixels that share common vertices with $x(i, j)$,
i.e., $[1,3,5,7]$.

Boundary detection

D-contour: pixels belonging to the object that have at least one neighbour that does not belong to the object

Contour (N -contour): pixels belonging to the object that have at least one D-neighbour that does not belong to the object

Boundary tracking


```
Coordinates of the next contour pixel:
s=0 -> i:=i+1;
s=1 -> i:=i+1; j:=j+1;
s=2 -> j:=j+1;
s=3 -> i:=i-1; j:=j+1;
```

Indication of the neighbour for which search for the next contour pixel starts:
s=0 -> s:=5;
s=1 -> s:=6;
s=2 -> s:=7;
s=3 -> s:=0;

Boundary tracking

Next_ij(s,i,j)

Indication of the neighbour for which the next contour pixel resides

```
Coordinates of the next contour pixel:
s=0 -> i:=i+1;
s=1 -> i:=i+1; j:=j+1;
s=2 -> j:=j+1;
s=3 -> i:=i-1; j:=j+1;
```

Indication of the neighbour for which search for the next contour pixel
starts:
s=0 -> s:=5;
s=1 -> s:=6;
s=2 -> s:=7;
s=3 -> s:=0;

Boundary tracking - algorithm

\{ Contour - number of contour pixels;

Contour_tab - table containing sequence of contour pixels' neighbourhoods
i,j - coordinates of the starting pixel of the contour\}
....
s:=0;
s:= Next_s(s,i,j); Next_ij(s,i,j);
Contour := 0; Start_i := i; Start_j := j; Start_s :=s ; repeat

$\mathrm{s}:=$ Next_s(s,i,j);

Next_ij(s,i,j); Inc(Contour); Contour_tab[Contour] := s; until ($\mathrm{s}=$ Start_s) and ($\mathrm{i}=$ Start_i) and ($\mathrm{j}=$ Start j);

Boundary detection - MATLAB

```
%MATLAB
x = imread('tire.tif');
BW1=im2bw(x,0.2); %image thresholding
BW2 = bwperim(BW1,8); %n-contour 8-connected neighbourhood
imshow(x);
figure, imshow(BW1)
figure, imshow(BW2)
```


BW1

BW2

Geometric Features

Perimeter - length of objects boundary

$$
\mathrm{T}=\int \sqrt{x^{2}(t)+y^{2}(t)} d t
$$

For a discrete grid contour length is not just the number of boundary pixels!

Contour length

1. Contour length is the number of boundary pixels

$$
L=15
$$

Expect large error !

Contour length

2. Contour length is the sum of line segments lenghts connecting pixel centres. Pixel size is 1×1.

$$
L=12+3 \sqrt{2}
$$

A better method than

 the first.
Contour length

3. Contour length is estimated from:

$$
\mathrm{O}=a \mathrm{~N}_{\mathrm{B}}-b \mathrm{~N}_{\mathrm{w}}
$$

N_{B} - number of external sides of contour pixels
\mathbf{N}_{A} - number of contour vertices

$$
\begin{aligned}
& a=\frac{\pi(1+2)}{8} \quad b=\frac{\pi}{82} \\
& L=22 a-7 b=?
\end{aligned}
$$

This is an optimum method for a hypothetical shape having boundaries in all directions.

Comparison of methods

METHOD	(1)	(2)	(3)	True length
Rectangle	276,0	276,0	263,2	280
Circle	180,0	211,5	203,5	204,2

$a=90$

Area

$$
A=\iint_{R} d x d y=\int_{\partial R} y(t) \frac{d x(t)}{d t} d t-\int_{\partial R} x(t) \frac{d y}{d t} d t
$$

where R and ∂R denote object region and its boundary, respectively (e.g., for a circle of unit radius $x(t)=\sin (t), y(t)=\cos (t))$.

\%MATLAB
help bwarea

Region filling algorithm

Coordinates $\mathrm{x}_{\mathrm{g}}, \mathrm{X}_{\mathrm{d}}$, are stored and filled after finishing with first filled row etc.

Region filling algorithm- concave regions

Concave object?

Radii

Radii $R_{\text {min }}, R_{\text {max }}$ are the minimum and maximum distances, respectively, to the boundary from the centre of region mass. The ratio $R_{\text {max }} / R_{\text {min }}$ (sometimes called object aspect ratio).

Compactness

Roundness (compactness) - is a measure of how region shape is different from a circular shape

$$
\gamma=\frac{\text { (boundary length }^{2}}{4 \pi(\text { area })}
$$

For a circular boundary γ is minimum and equals 1 , e.g. for a square $\gamma_{\square}=4 / \pi>1$.

Compactness coefficients

© IE PL

Symmetry

There are two common types of symmetry of shapes, rotational (radial) and mirror. Other types of symmetry are two-fold, four-fold, etc.

Square A has 4 -fold symmetry, Circle B is rotationally symmetric, Small circles $\mathrm{C}_{1}, \ldots \mathrm{C}_{4}$ have 4 -fold symmetry

Centre of mass (centroid)

$$
\begin{aligned}
& S C_{i}=\frac{1}{P} \sum_{k=1}^{P} i_{k}, \quad S C_{j}=\frac{1}{P} \sum_{k=1}^{P} j_{k} \\
& P-\text { number object pixels }
\end{aligned}
$$

Note that centre of mass coordinates can be non-integer numbers

Centre of mass (centroid)

$$
\begin{aligned}
& S C_{i}=\frac{1}{K} \sum_{l=1}^{K} i_{l}, \quad S C_{j}=\frac{1}{K} \sum_{l=1}^{K} j_{l} \\
& K-\text { number of contour } p \text { ixels }
\end{aligned}
$$

Centre of mass is calculated just on the basis of the contour points

Calculation of the centroid

```
{ Contour - number of contour pixels;
Contour_tab - table containing sequence of contour pixels'
neighbourhoods
i,j - coordinates of the starting pixel of the contour}
XCenter:=0; YCenter:=0;
for n:=1 to Contour do
begin
    Xcenter := Xcenter + i; Ycenter := Ycenter + j;
    Next_ij(Contour_tab[n],i,j)
end;
XCenter:=XCenter div Contour;
YCenter:=YCenter div Contour;
```


Maximum diameter

$$
\begin{aligned}
& D=2 \max \left(\sqrt{\left(i_{k}-S C_{i}\right)^{2}+\left(j_{k}-S C_{j}\right)^{2}}\right) \quad k=1,2, \ldots, P \\
& P-\text { number of object pixels }
\end{aligned}
$$

Ferets

Region orientation can be identified from its projection onto X and Y axes, these are termed X Feret and Y Feret, correspondingly.

Maximum Feret's diameter

is the line between two object points that are farthest apart.

Finding Ferets

$$
\begin{aligned}
& \text { Feret }_{i}=\max \left(i_{k}-i_{l}\right), \quad k, l=1,2, \ldots, P \\
& \text { Feret }_{j}=\max \left(j_{k}-j_{l}\right), \quad k, l=1,2, \ldots, P \\
& P-\text { number of object pixels }
\end{aligned}
$$

Finding Ferets - algorithm

\{ FeretX, FeretY - calculated Feret diameters;
Contour_tab - table containing sequence of contour pixels'
neighbourhoods
i,j - coordinates of the starting pixel of the contour\}
FerXMi := N; FerXma := 0; FerYMi := N; FerYMa := 0;
for $\mathrm{n}:=1$ to Edge do begin if FerXMi > i then FerXmi := i; if FerYMi > j then FerYmi := j; if FerXMa < i then FerXma := i; if FerYMa < j then FerYma := j; Next_ij(Contour_tab[n],i,j);
end;
FeretX := FerXMa - FerXMi; FeretY := FerYMa - FerYMi;

