Region (shape) representation

Shape Features

Topological

- connectivity
- Euler number
- number of holes
- skeleton

Geometric

- perimeter
- area
- max-min radii
- roundness
- symmetry

Moment-based

- centre of mass
- X, Y Feret
- bounding rectangle
- best-fit ellipse

Pixel neighbourhood on a grid

5	6	7	
4	x(i,j)	0	
3	2	1	

Direct neighbour

(D-neighbour) of x(i,j): pixels that share common sides with x(i,j), i.e., [0, 2, 4, 6].

Non-direct neighbours

(N-neighbour) of x(i,j): pixels that share common vertices with x(i,j), i.e., [1, 3, 5, 7].

Boundary detection

D-contour: pixels belonging to the object that have at least one neighbour that does not belong to the object

Contour (N-contour): pixels belonging to the object that have at least one D-neighbour that does not belong to the object

Boundary tracking

Coordinates of the next contour pixel:

```
s=0 -> i:=i+1;

s=1 -> i:=i+1; j:=j+1;

s=2 -> j:=j+1;

s=3 -> i:=i-1; j:=j+1;

...
```

Indication of the neighbour for which search for the next contour pixel starts:

```
s=0 -> s:=5;
s=1 -> s:=6;
s=2 -> s:=7;
s=3 -> s:=0;
```

Indication of the neighbour for which the next contour pixel resides

Boundary tracking

Next_ij(s,i,j)

Indication of the neighbour for which the next contour pixel resides

Coordinates of the next contour pixel:

Indication of the neighbour for which search for the next contour pixel starts:

Boundary tracking - algorithm

```
{ Contour – number of contour pixels;
Contour_tab – table containing sequence of contour pixels'
neighbourhoods
i,i – coordinates of the starting pixel of the contour}
s := 0;
s := Next_s(s,i,j); Next_ij(s,i,j);
Contour := 0; Start_i := i; Start_j := j; Start_s :=s ;
repeat
   s := Next_s(s,i,j);
   Next_ij(s,i,j); Inc(Contour); Contour_tab[Contour] := s;
until (s=Start_s) and (i=Start_i) and (j=Start_j);
```

Boundary detection - MATLAB

```
%MATLAB
x = imread('tire.tif');
BW1=im2bw(x,0.2); %image thresholding
BW2 = bwperim(BW1,8); %n-contour 8-connected neighbourhood
imshow(x);
figure, imshow(BW1)
figure, imshow(BW2)
```

X BW1 BW2

Geometric Features

Perimeter - length of objects boundary

$$T = \int \sqrt{x^2(t) + y^2(t)} dt$$

For a discrete grid contour length is not just the number of boundary pixels!

Contour length

 Contour length is the number of boundary pixels

$$L = 15$$

Expect large error!

Contour length

2. Contour length is the sum of line segments lenghts connecting pixel centres. Pixel size is 1 x 1.

$$L = 12 + 3\sqrt{2}$$

A better method than the first.

Contour length

3. Contour length is estimated from:

$$O = aN_B - bN_W$$

N_B - number of external sides of contour pixels

N_A - number of contour vertices

$$a = \frac{\pi(1+\sqrt{2})}{8}$$
 $b = \frac{\pi}{8\sqrt{2}}$

$$L = 22a-7b = ?$$

This is an optimum method for a hypothetical shape having boundaries in all directions.

Comparison of methods

METHOD	(1)	(2)	(3)	True length
Rectangle				
	276,0	276,0	263,2	280
Circle				
	180,0	211,5	203,5	204,2

Area

$$A = \iint_{R} dxdy = \int_{\partial R} y(t) \frac{dx(t)}{dt} dt - \int_{\partial R} x(t) \frac{dy}{dt} dt$$

where R and ∂R denote object region and its boundary, respectively (e.g., for a circle of unit radius x(t)=sin(t), y(t)=cos(t)).

%MATLAB help bwarea

Region filling algorithm

Coordinates x_g , x_d , are stored and filled after finishing with first filled row etc.

Region filling algorithm- concave regions

Concave object?

Radii

Radii R_{min} , R_{max} are the minimum and maximum distances, respectively, to the boundary from the centre of region mass. The ratio R_{max}/R_{min} (sometimes called object aspect ratio).

Compactness

Roundness (compactness) - is a measure of how region shape is different from a circular shape

$$\gamma = \frac{\text{(boundary length)}^2}{4\pi(\text{area})}$$

For a circular boundary γ is minimum and equals 1, e.g. for a square $\gamma_{\square} = 4/\pi > 1$.

Compactness coefficients

Symmetry

There are two common types of symmetry of shapes, rotational (radial) and mirror. Other types of symmetry are two-fold, four-fold, etc.

Square A has 4-fold symmetry, Circle B is rotationally symmetric, Small circles $C_1, \ldots C_4$ have 4-fold symmetry

Centre of mass (centroid)

		i ₁ ,j ₁	
	i ₂ ,j ₂	i ₃ , j ₃	
		i _P ,j _P	

$$SC_i = \frac{1}{P} \sum_{k=1}^{P} i_k, \quad SC_j = \frac{1}{P} \sum_{k=1}^{P} j_k$$

P-number object pixels

Note that centre of mass coordinates can be non-integer numbers

Centre of mass (centroid)

$$SC_i = \frac{1}{K} \sum_{l=1}^{K} i_l, \quad SC_j = \frac{1}{K} \sum_{l=1}^{K} j_l$$
 $K-number\ of\ contour\ p\ ixels$

Centre of mass is calculated just on the basis of the contour points

Calculation of the centroid

```
{ Contour – number of contour pixels;
Contour_tab – table containing sequence of contour pixels'
neighbourhoods
i,i – coordinates of the starting pixel of the contour}
XCenter:=0; YCenter:=0;
for n:=1 to Contour do
begin
  Xcenter := Xcenter + i; Ycenter := Ycenter + j;
  Next_ij(Contour_tab[n],i,j)
end;
XCenter:=XCenter div Contour;
YCenter:=YCenter div Contour;
```

Maximum diameter

$$D = 2 \max(\sqrt{(i_k - SC_i)^2 + (j_k - SC_j)^2}) \qquad k = 1, 2, ..., P$$

P – number of object pixels

Ferets

Region orientation can be identified from its projection onto X and Y axes, these are termed X **Feret** and Y **Feret**, correspondingly.

Maximum Feret's diameter

is the line between two object points that are farthest apart.

Finding Ferets

 $Feret_{i} = \max(i_{k} - i_{l}), k, l = 1, 2, ..., P$ $Feret_{j} = \max(j_{k} - j_{l}), k, l = 1, 2, ..., P$ P - number of object pixels

Finding Ferets - algorithm

```
{ FeretX, FeretY - calculated Feret diameters;
Contour_tab – table containing sequence of contour pixels'
neighbourhoods
i,i – coordinates of the starting pixel of the contour}
FerXMi := N; FerXma := 0; FerYMi := N; FerYMa := 0;
for n:=1 to Edge do begin
  if FerXMi > i then FerXmi := i; if FerYMi > j then FerYmi := j;
  if FerXMa < i then FerXma := i; if FerYMa < j then FerYma := j;
  Next_ij(Contour_tab[n],i,j);
end;
FeretX := FerXMa - FerXMi; FeretY := FerYMa - FerYMi;
```