Reconstruction of three dimensional scenes

Problem formulation

Three dimensional automatic scene sensing means capturing shape, appearance and spatial coordinates of real objects.

Shape - geometry of 3D object

Appearance - surface attributes: colour, texture, reflectance

Spatial coordinates – (X,Y, Z) coordinates in 3D

There are methods of 3D scene reconstruction from a set of 2D images

3D scene reconstruction methods

- Stereo image pair matching
- Structure from motion camera image sequence
- Shape reconstruction from shading
- Projection of structured light
- Laser scanning

<mark>©Tokyo-Boeki</mark>

Applications

- Robotics
- Medicine
- Electronic travel aid for the blind
- Product design
- Virtual reality
- Computer games

Robotics - robot vision

Image copied from: http://marsrovers.jpl.nasa.gov

Medical imaging: 3D endoscopic surgery

From: "3D Reconstruction of the operating field for image overlay in 3D-endoscopic surgery" by F. Mourgues, F. Devernay and E. Coste-Maniere

Travel aid system for blind

3D object modelling

Copied from the article: "Spatio-Temporal Stereo using Multi-Resolution Subdivision Surfaces" by J. Neumann and Y. Aloimonos

Perspective Transformations

"pin-hole" camera model

Perspective Transformation

Projection of the world point onto the image plane

Assumptions:

- world and camera coordinate systems are identically aligned
- $-Z>\lambda$

$$\frac{x_0}{\lambda} = \frac{X}{Z - \lambda} = \frac{X}{\lambda - Z}$$

$$\frac{y_0}{\lambda} = \frac{Y}{Z - \lambda} = \frac{Y}{\lambda - Z}$$

Inverted images

Inverse Perspective Transformation

Projection of the image point onto the world point

$$X = \frac{x_0}{\lambda} (\lambda - Z)$$
$$Y = \frac{y_0}{\lambda} (\lambda - Z)$$

$$Y = \frac{y_0}{\lambda} (\lambda - Z)$$

Two equations three unknowns

Conclusions

Mapping of 3D scene onto the image plane is a many-to-one transformation: image point corresponds to a set of collinear 3D points

The inverse transformation cannot be performed on the basis of a single image

Other cues about distance from a monocular view

Motion

Other cues about distance from a monocular view

Other cues about distance from a monocular view

"Precoded" perception of perspective

Binocular vision

Convergence of eyes optical axis

Binocular disparity

Stereo image acquisition: (non-epipolar case)

Stereo image acquisition: (epipolar case)

Stereo image acquisition - top view

3D point reconstruction in stereoscopy: Inverse Perspective Transformation

$$X = \frac{x_1}{\lambda} (\lambda - Z)$$

$$Y = \frac{y_1}{\lambda} (\lambda - Z)$$

$$Z = \lambda - \frac{\lambda B}{x_2 - x_1}$$

$$Z \cong \frac{\lambda B}{x_2 - x_1}$$

disparity

Three equations - three unknowns

3D point reconstruction in stereoscopy: Inverse Perspective Transformation

$$Z \cong \frac{\lambda B}{x_2 - x_1} = \frac{\lambda B}{\Delta_p n}$$

Example:

B = 8cm – base of the stereovision system

 $\lambda = 5mm - lens focal length$

 $\Delta_p = 7\mu m$ – pixel size

n – integer number *n*≥1

Depth resolution in stereoscopy

Depth error *∝* 1/B

Sub-pixel accuracy required for precise depth estimation!

Digital image matching: correspondence problem

Digital image matching automatically establishes the correspondence between primitives extracted from two or more digital images depicting at least part of the same scene

Image matching problems:

- selection of primitives for matching
- •choice of models for mapping of primitives
- measure of similarity of corresponding primitives
- matching algorithm
- matching strategy

Corner detection (Harris detector)

Digital image matching approaches

Local correspondence methods:

- Block matching
- Gradient-based optimisation
- Feature matching

Global correspondence methods:

- Dynamic programming
- Intrinsic curves
- Graph cuts
- Other methods

Digital image matching - the concept of disparity

Metrics in block image matching

- Normalised cross-correlation
- •Sum of squared differences SSD
- •Normalised sum of squared differences

- Rank
- •Census

$\sum (I_1(x,y) - I_2(x+d,y))^2$	→ min
x, y	

89	63	72	
67	55	64	2
58	51	49	

Rank

89	63	72	
67 [†]	55	64	00000110
58	51	49	

Census

Image data for verification of matching algorithms

ground truth disparity image

computed disparity image

Summary – issues in 3D scene reconstruction using stereoscopy

Hardware:

- 1. Good quality gen-locked cameras
- 2. Camera resolution vs. stereo-base tradeoff
- 3. Decide about FOV (viewing camera angles)
- 4. Rigid mounting of the cameras!

Software:

- 1. Geometric distortions need to be corrected (internal geometry)
- 2. Rectify stereo images to the canonical set-up (external geometry)
- 3. Correspondence (expect: occlusions, non-texture regions, non-Labertian surfaces)

Calibration

- **4.** Reconstruction (3D scene structure from disparity map, is dense disparity really required?)
- 5. Real-time operation?

