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Abstract: An attempt is made to develop automatic
techniques for the selection of image features for
texture analysis of magnetic resonance test objects
(phantoms). The test objects are designed for
standardization of in vivo magnetic resonance
imaging. They are made of reticulated foam
embedded in agarose gel. Different porosity foam
materials are used to manufacture the phantoms. The
MR images of the foam phantoms are split into
classes differing by the foam pore size. For any image
texture, a large number of its statistical features can
be computed. Since not all of them are carrying the
information necessary for texture classification, there
is a need to select those that have the largest
discriminative power. Two feature-selection
techniques are tested, based respectively on the value
of Fisher coefficient F and combined probability of
classification error and average correlation between
features. Early experimental results are presented and
discussed using a series of MR-scanned phantom
images. The effect of MRI slice thickness on F is
demonstrated as well.
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1. INTRODUCTION

The traditional obstacles in obtaining quantitative
description of the state of human body – invisible
internal structures, inaccessible tissue, fast and
complicated evolution in time and space, and
traditional qualitative analysis methodology (careful

but descriptive observation of individuals and
population) – no longer seem impossible barriers [1].
Among the most significant technological advances
that have contributed to the remarkable change from
qualitative to quantitative medical diagnosis and
therapy are imaging techniques. Especially magnetic
resonance imaging (MRI) has made it possible to see
the interior structures of the body and watch them
without harm to the living subjects. There is a need
for quantitative description of the MR images to
stimulate more repeatable and objective medical
diagnosis. One of the characteristics that are expected
to carry on the diagnostic information is the image
texture [9].

Studies have been carried out [8] to investigate
whether texture measurements are transportable
between magnetic resonance centers and to make firm
conclusions as to the machine settings and sequence
selection required. At present, development of
quantitative methods of texture analysis of magnetic
resonance images is the subject of COST B11
European Community project scheduled for the years
1998-2002 [7]. The aim of this project is to develop
methods, which would allow reliable discrimination
of different kinds of tissue in MR images,
independent of scanner type and place of its
installation.



Figure 1. MR images of glass tubes filled with foam
material in two cross-section views.

2. TEST OBJECT IMAGES

The use of texture analysis in magnetic resonance
imaging requires the availability of texture test objects
(phantoms) for use in standardization of in vivo
measurements. Four physical phantoms were
manufactured in Medical Physics Department,
University of Dundee, Scotland. Three of them are in
the form of glass tubes filled with different-porosity
reticulated foam, one tube is filled with glass beads
(Fig. 1). The foams and the space between glass beads
are stuffed with agarose gel that possesses a relatively
long value of magnetic resonance T2 response [8].

The tubes are sealed properly to prevent the water
included in the gel from evaporation. A series of
magnetic resonance images of the phantoms were
recorded using a Siemens Magnetom 1.5-Tesla
scanner at the German Research Cancer Center,
Heidelberg, Germany. The images represent cross-
sections of the foam- and glass beads-filled tubes,
taken at field of view of 100 mm×100 mm, constant
number of image pixels (256×256), different values of
slice thickness (2 mm and 4 mm) – all acquired at 5
different positions along the tube axis. As a result, 4
different texture classes were obtained with five
samples in each class, in this initial study. Each
texture sample was an image containing 38×33 pixels.
Example of the MR textured images is presented in
Figure 2.

3. MATERIAL AND METHODS

A number of subroutines in Matlab and a specialized
MS Windows application program MaZda [7] were
written to compute a variety of texture features
(parameters), including those computed from co-
occurrence, run-length and gradient matrices [5]. The
programs were applied to the recorded MR images to
compute texture features and thus characterize texture
properties.

For each texture sample, the following 245 features
were calculated:

� GR: 5 gradient-based features (absolute gradient
mean, variance, skewness, kurtosis, and percentage of
non-zero gradients),

� RL: 20 run-length matrix-based features (short
run emphasis inverse moment, long run emphasis
moment, gray level nonuniformity, run length
nonuniformity and fraction of image in runs,
separately for horizontal, vertical, 45° and 135°
directions),

� CO: 220 co-occurrence matrix based features [11
features defined in [4] calculated for matrices
constructed for five distances between image pixels
(d=1, 2, 3, 4 and 5), and for the four directions as in
the case of RL features].

  a1        a2 a3         a4 b
Figure 2. MR phantom images: a1 – foam, large pore size; a2 – glass bead; a3 – foam, medium pore size; a4
– foam, small pore size; b – background noise. Slice thickness: upper row – 4 mm, lower row – 2 mm.
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Figure 3. Tables of features selected for 5 texture
classes according to the value of F coefficient. MRI
slice thickness: a) 2mm, b) 4mm.

Prior to feature calculation, mean value µ and
standard deviation σ of each image was computed.
These values were then used to normalize images – by
quantizing their intensity in the range from µ-3σ to
µ+3σ  [11] to 64 gray levels (6-bit word-length).

To quantitatively evaluate the features ability to
separate different texture classes, two different
techniques have been used in this study. One of them
is based on Fisher F coefficient [13], which is the
ratio of mean-squared between-class distance D2

(computed between the class means µµµµk, k=1,2,...,K) to
the mean of mean-squared within-class distances Vk

2

(computed between the samples of class k and the
corresponding class mean µµµµk)
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where Pk denotes the a priori probability of data
belonging to texture class k. The other one uses the
combined measures of classification error (POE –

probability of error) and average correlation
coefficient (ACC) between features so far selected
[12]. A package of MS Windows 9x/NT programs
was written to implement the two automatic methods
for feature subset selection.

For feature vector classification, the nearest neighbor,
k-NN, technique [2] was used. Due to the small size
of the data (25 sample vectors, 5 samples per class),
only one neighbor (1-NN) was considered. Finally,
small size artificial neural networks (ANN) were
trained on the available data to make the data
nonlinear transformation and to classify the textures.
The ANNs considered were single hidden layer
feedforward networks with sigmoidal processing
elements [6].

4. RESULTS AND DISCUSSION

Figure 3 demonstrates a list of first ten texture
features selected by the program according to
descending Fisher coefficient value computed from
(1) with K = 5. For further reference, the features
chosen for slice thickness of 2 mm (Fig. 3a) are
denoted as feature set 1, FS1, and those chosen for
slice thickness of 4 mm (Fig. 3b), are designated as
FS2. Interestingly, for both MRI slice thickness
values, the only feature selected to form FS1 and FS2
was the so-called angular second moment,
AngScMom, [4],[5], derived from the co-occurrence
matrix. In each feature case, the CO matrix chosen
was computed for different separation and orientation
of pixel pairs. [As an example, S(4,-4) denotes every
pair of pixels that are separated by 4 sampling
intervals in the horizontal direction, and –4 intervals
in the vertical direction. In other words, these
particular pixels are located on a diagonal line,
oriented at 45 degrees from horizontal direction.] The
inter-pixel distances selected by the program cover
the whole range of distances available in the program,
from 1 to 5. This is in agreement with the fact that
texture classes under investigation cover a broad
range of texture primitive element sizes
(corresponding roughly to the foam pore size).

Two lists of ten texture features chosen by the
POE+ACC technique are shown in Fig. 4,
respectively for MRI slice thickness of 2 mm and 4
mm. Consequently, they are denoted by FS3 (Fig. 4a)
and FS4 (Fig. 4b). Most of these features have their
origin in the CO matrix of different pixel-pair
distance and orientation. However, the run-length and
absolute gradient matrices are also represented.

Only two features appeared simultaneously in FS3
and FS4 feature sets. They are “Vertical Run-Length
Nonuniformity” (Vertl_RLNonUni) and (3,3) CO
matrix-derived “Inverse Differential Moment”
(InvDfMom) for the POE+ACC technique. In the case
of Fisher coefficient-based selection (FS1 and FS2),
the CO-matrix feature “Angular Second Moment”
(AngScMom)   repeated   itself,   obtained   for  two
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Figure 4. Tables of features selected for 5 texture
classes according to the minimum weighted sum of
classification error and mean inter-feature correlation
coefficient (POE+ACC method). MRI slice thickness:
a) 2mm, b) 4mm.

different pixel separation vectors (0,4) and (5,-5). The
set of these 4 features was also used, as the basis for
fifth data set for texture classification, FS5, for 2-mm
slices and set FS6, for 4-mm slices.

First, an attempt was made to classify the data vectors
corresponding to feature sets FS1 – FS6. The results
are presented in Table 1. One can see that the
numbers of missclassified raw (unprocessed) data
vectors are significant.

Table 1. Results of 1-NN classification of raw data
vectors

Data set Number of errors

FS1 (2 mm, Fisher) 3

FS2 (2 mm, POE+ACC) 8

FS3 (4 mm, Fisher) 3

FS4 (4 mm, POE+ACC) 8

FS5 (2 mm) 11

FS6 (4 mm) 10

To check whether optimal linear data transformation
can help to discriminate the texture classes under
consideration, the linear discriminant analysis (LDA)
was applied to the collected data vectors [3]. These
vectors were projected on the eigenvectors of the

TW CC 1− matrix, where WC is the within-class scatter

matrix and TC  is the total scatter matrix. In the case
of 10-dimensional features from sets FS1-FS4, the
features obtained after projection were 4-dimensional,
which is in agreement with theory (4 = 5-1, where 5 is
the number of classes in the considered case). The
LDA features were used to form new data sets, which
were then classified using the 1-NN technique. The
results of the classification are presented in Table 2.
One can notice a significant reduction in the
classification error. This means that features selected
to describe the texture under consideration carry the
information necessary to discriminate the 5 texture
classes. Moreover the 5 classes seem to be separable;
however, more experiments are needed to confirm
this, based on larger data sets.

Table 2. Results of 1-NN classification of LDA
vectors

Data set Number of errors

FS1 (2 mm, Fisher) 2

FS2 (2 mm, POE+ACC) 0

FS3 (4 mm, Fisher) 0

FS4 (4 mm, POE+ACC) 0

FS5 (2 mm) 0

FS6 (4 mm) 2

To see whether other classification techniques would
confirm the above findings, one more experiment was
conducted using ANNs with a small number of
weights. To further reduce the number of weights and
thus avoid the overtraining problem, the 4-
dimensional LDA features were used as ANN inputs,
instead of 10-dimensional raw data vectors. The ANN
was used to project the input to a 2-dimensional
space, called the nonlinear discriminant analysis
(NDA) space [10]. As an effect, further data reduction
was possible. Figure 5 shows the obtained texture
class clusters on the NDA plane. Apparently, all the 5
clusters are linearly separable, giving the evidence
that the MRI phantoms can be firmly distinguished
based on their texture.

It is interesting to note that Fisher coefficient
computed for 2 mm MRI slices is about two times
larger compared to its value for 4 mm images. This is
illustrated in Table 3. This reflects the smoothing
effect of small structural details of the foam material
as they are averaged over a larger volume of 4-mm
thick MRI slices compared to thinner, 2-mm slices. In
other  words,  the  discrimination measure is higher in



Figure 5. Nonlinearly projected features on a 2-
dimensional NDA feature space. Segments of straight
lines separate the five texture classes in the new
feature space.

the case of 2-mm slice images, because for thinner
slice, pores located in deeper layers distort the
original (cross-sectional) texture structure to a lower
extent. The effect of this distortion is especially
visible in Fig. 2, where images from upper (4 mm)
and lower (2 mm) rows can compare to each other.
The experiments conducted show that texture analysis
is a useful tool to evaluate the influence of MRI
scanner parameters on diagnostic contents of MR
images.

Another observation drawn from Table 3 is that the
value of F is larger for FS1 and FS3 as compared to
FS2 and FS4. This can be explained by the fact that it
is the F coefficient value which is maximized by the
choice of features in the first feature selection
technique described in Section 2. The POE+ACC
method does not take the F value into account
directly, so the resulting values of (1) are generally
smaller for the features selected by this technique.
There is no evidence available by now to demonstrate
superiority of any of these techniques to each other –
further analysis is needed based on larger data sets.
One should remember that the sample size is very
small in this study and further justification of the
possibility is necessary, based on more extensive
experimental material.

Table 3. Fisher coefficient for raw data sets

Data set Fisher coefficient

FS1 (2 mm, Fisher) 1485.5

FS2 (2 mm, POE+ACC) 84.6

FS3 (4 mm, Fisher) 857.0

FS4 (4 mm, POE+ACC) 28.0

5. CONCLUSIONS

An attempt has been made to evaluate the
effectiveness of statistical parameters as texture
features to discriminate between different test objects

for magnetic resonance imaging. Since a vast number
of different feature definitions has been developed
and described in the literature, there is a need for
developing techniques for best feature selection – for
the task of texture classification. Two methods of
automatic feature selection were considered in the
paper and tested – based on the value of Fisher
coefficient and based on minimum classification error
and minimum correlation between selected features.
Both techniques are effective in terms of generating
subsets of features that can be used to classify the
textures with a very small error. Linear and nonlinear
discriminant analyses are useful to form compact data
sets for classification.

The experiments with a set of measured images of
phantom objects showed that classification of
physical objects of different internal structure is
possible based on MRI texture parameters. The
experiments conducted with MR images of different
slice thickness indicate that texture analysis is a useful
tool to evaluate the influence of MRI scanner
parameters on diagnostic contents of MR images.
This can be of much value to quantitative description
of the MR imaging process and can contribute to
more repeatable and objective medical diagnosis.

For the future, the following investigations are
planned:

� consideration of new texture features (e.g.
wavelet and mathematical morphology based
features),

� comprehensive analysis of noise, slice thickness
and field of view MR parameter influence on
classification accuracy and selection of features that
would be weakly dependent on noise,

� extending the results to texture classification of
biological tissue,

� analysis of efficiency of other known techniques
for feature selection, data preprocessing and
classification applied to the task of MRI
interpretation.
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