Processing of colour images

- **□**Colour representation schemes
- ☐ Filtering of colour images

Electromagnetic spectrum

Eye sensitivity to colour components

Commission Internationale de l'Eclairage (CIE) Chromaticity Diagram

RGB colour space

Each colour component (R,G,B) is registered and digitized in a separate video channel

RGB additive primaries

YIQ (YUV) colour space

Y is a luminance component and is a linear combination of (R,G,B) (I,Q) componets define a colour.

Y – luminance,

I – inphase,

Q – quadrature

NTSC system

Equivalence of colour spaces

There exist a one-to-one mapping between RGB and YIQ systems.

$$I = 0.596R - 0.274G - 0.322B$$
 $G=Y - 0.272I + 0.647Q$

For a human eye perception a better approach it is to code separately luminance and chrominance components (SVHS, 8mm)

HSI colour system

H - hue, S - saturation, I - intensity

- Well suited for a human visual perception system
- Difficult for hardware implementation

Saturation

Intensity

CMY colour system

A black component is added (CMY+K), in order to obtain a better image contrast

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

CMY colour components are substractive colours (as opposed to RBG components that are additive colour components)

CMY subtractive primaries

Processing of color images in spatial domain

Filtering of colour images in spatial domain

Filtering of colour images in spatial domain

Another possible approach:

- 1. Convert from RGB to YIQ
- 2. Filter the Y (luminance) component and keep the colours (I, Q) unchanged
- 3. Convert back to RGB

High pass filtering of Y component

%Matlab

h=fspecial('unsharp');

ys=filter2(h,y);

