

## Visual perception basics



#### Light perception by humans

Humans perceive approx. 90% of information about the environment by means of visual system.

Efficiency of the human visual system is characterised by a number of features:

- the ability to resolve image details (θ=1'=1°/60=pi/10800);
- the ability to discriminate between brightness levels (contrast sensitivity);
- colour perception;
- brightness adaptation;



# Structure of the human eye

retina 125×10<sup>6</sup> receptors



#### Distribution of rods and cones in the retina



## Spectral sensitivity characteristic of the human eye



#### **Contrast sensitivity (Weber fraction)**



The ratio  $\frac{\Delta I}{I}$  is termed the Weber fraction. It reflects contrast sensitivity characterists of the human eye.

## Image coded using 16 gray levels



4 bits/pixel

#### Mach bands





#### Visual illusions









#### Visual path of the image processing system

Visual path – a set optical and electronic elements converting radiant energy into an electrical signal and imaging it using display devices.







$$0 < i(x, y) < \infty$$
 - illumination  $(x, y)$ 

$$0 < r(x, y) < 1$$

reflectance coefficient at (x,y)



**Image** – a 2-D light intensity function f(x,y)>=0 reflecting light energy distribution

illumination: sunny day ~ 5000 cd/m<sup>2</sup>, cloudy day ~ 1000 cd/m<sup>2</sup>, full moon ~ 0.001 cd/m<sup>2</sup>,

Reflectance coeff.: black velvet - 0.01, white wall - 0.8, snow - 0.93.

For a linear process of energy acummulation in the image sensor plane:

$$f(x,y) = \int_{-\infty}^{\infty} \int f(\alpha,\beta) h(x,y,\alpha,\beta) d\alpha d\beta$$

h(.) – is the impulse response of the system; in optical systems it is termed *the* **point spread function** of the system

If the **point spread function** is shift invariant, then the image formation model is given by a convolution integral:

$$f(x,y) = \int_{-\infty}^{\infty} \int f(\alpha,\beta)h(x-\alpha,y-\beta)d\alpha d\beta$$





Assume the source image (analog image) features a limited Fourier bandwidth



Image sampling function:

$$S(x, y) = \sum_{i=0}^{M-1} \sum_{k=0}^{N-1} \delta(x - i\Delta x, y - k\Delta y)$$

and a sampled image:

$$f_{S}(x,y) = f(x,y)S(x,y) =$$

$$= \sum_{i=0}^{M-1} \sum_{k=0}^{N-1} f(i\Delta x, k\Delta y) \delta(x - i\Delta x, y - k\Delta y)$$

Fourier spectrum of the sampled image:

$$F_{s}(\omega_{x}, \omega_{y}) = \frac{1}{\Delta x \Delta y} \sum_{i=0}^{M-1} \sum_{k=0}^{N-1} F(\omega_{x} - i\Delta \omega_{x}, \omega_{y} - k\Delta \omega_{y})$$

where:

$$\Delta \omega_{x} = \frac{1}{\Delta x}, \quad \Delta \omega_{y} = \frac{1}{\Delta y}$$

$$\Delta \omega_{x}$$



#### Aliasing distortion - example





Scanned images:

500 dpi

100 dpi (dots per inch)

#### Image acquisition

Image acquisition is the process of converting light energy radiating from image scene points into an electrical signal (suitable for storing or transmission).

#### Image acquisition devices:

- CCD camera
- Video camera
- Scanner
- Digitizer

#### Image acquisition

There are two basic schems of converting optical images into electrical signals:

- without accumulation of photo-charges (eg. optical scanner),
- with accumulation of photo-charges (np. vidicon, CCD array)

#### **Imaging sensor (no photo-charges)**



#### CCD array (accumulation of photo-charges)

Image formation is based on the internal photo-electric phenomenon



Capacitor cell

#### The Bayer matrix



Calculate RGB image by interpolating colour components from the Bayer matrix

#### **FOVEON** matrix



www.foveon.com

### Pixim – Digital Pixel System (DPS)



A/D converter for each pixel (no charge couplings)

Single A/D converter

#### **CMOS** image sensors



#### Pros:

- cheap technology (used for fabricating memory and CPU modules),
- low power consumption (100 times!)
- random access to pixel regions (block image processing)
- no "charge leaking" typical for CCD technology
- on-chip analog-to-digital conversion and signal processing

#### Cons:

- more susceptibel to noise than CCD
- lower light sensitivity due to many transistors used for single pixel

