Signal Processing Test 1a

1. A harmonic signal is given $x(t)=\sin (10 \pi t+\pi / 4)$. Plot this signal using a correct time scale. Give the physical frequency in Hz of this signal and its angular frequency value.
2. The ratio of signal powers increases according to a series: $1,10,100,1000,10000$ express this series in a decibel scale. Show the calculations for the middle element of the series.
3. The amplitude of a sinusoidal signal is equal to $A_{i n}=10$ Volts. Voltage amplification of the amplifier is 20 dB , what is the amplitude $A_{\text {out }}$ of the output signal. Show calculations.
4. Plot the frequency spectrum of a Dirac delta function.
5. Compute the DC component and the energy of signal $x(n)=[1,2,3,4]$
6. Show calculations for computing the first two $X(k=0), X(k=1)$ coefficients of the Discrete Fourier Transform of signal $x(n)=[1,2,3,4]$
7. Provided the coefficient $X(k=2)=-0.5$ give absolute values of coefficients, i.e: $|X(k=0)|,|X(k=1)|$, $|X(k=2)|,|X(k=3)|$ of signal $x(n)$ from question (6) and plot the corresponding amplitude spectrum (hint: you can use the symmetry property of the Fourier coefficients).
8. We want to obtain a frequency resolution $f_{0}=0.1 \mathrm{~Hz}$ of the Fourier analysis of a signal sampled at a frequency of $f_{s}=100 \mathrm{~Hz}$. How many samples N of this signal we should take for the Fourier analysis?
9. Is the system $y(n)=3 x(n)+1$ linear? Prove and show calculations.
10. Give the equation defining convolution of discrete time signals $x(n)$ and $h(n)$. Compute convolution of these signals if the signals are: $x(n)=[1,2,3], h(n)=[1,2]$
