
Image processing and computer
graphics

Part 2

Adam Sankowski, Marek Kociński

2010

Introduction to NumPy
• NumPy is the fundamental package for scientific computing with

Python. It contains among other things:
– a powerful N-dimensional array object

– sophisticated (broadcasting) functions

– tools for integrating C/C++ and Fortran code

– useful linear algebra, Fourier transform, and random number capabilities

• To import whole NunPy module type:

 from numpy import *

• This line will import whole NumPy. If you want to just import one
object, for example arrays, type:

 from numpy import array

• It is recommended to use this convention of imprt:
iport numpy

import numpy as np

2

Array operations

• Create two arrays:

 a = array([1,2,3,4])

 b = array([2,3,4,5])

• and try few simple math operations:

 a + b

 a * b

 a **b

• To automatically create array in some range use arange()
function. Use help (arange). To make array from 0 to 10 type:

 x = arange(11.,)

3

Array operations

• In NumPy, there are predefined some mathematical constants
like pi or e. Type:

 c = (2*pi)/10

• To multiply whole x array by c try:

 x *= c or (x=x*c)

• Now we can get to know another important part of NumPy
which is plotting. Create simple function and plot it:

 y = sin(x)

 plot(x, y)

4

Array operations

• Another way to create array is by using linspace(). This NumPy
function returns evenly spaced samples calculated over
specified interval. Function takes three parameters: from
where to start, where is the end and how many samples you
need from that interval. Type:

 x = linspace(0, 2*pi, 50)

 plot (sin(x))

• Try different number of samples to see the difference. To find
out more about linspace() check:

 help (linspace)

5

Plotting

• To plot multiple data sets type:

 plot(x, sin(x),

 x, sin(2*x))

• or

 plot(x, sin(x))

 plot(x, sin(2*x))

• Simple GUI allows to pan, zoom,

 plot parameters and save image

• plot() is part of matplotlib module

6

When you put ‘,‘at the end

of line, next line will be

treated as part of previous

Line formatting

• Type help(plot) to see other possibilities of plot function. You
can format your data by changing color, adding shaped
markers. Let’s make sin(x) in blue and add circles, sin(2*x) will
be red with triangles:

 plot(x, sin(x), ’b-o’,

 x, sin(2*x),’r-^’)

• or

 plot(x, sin(x), ’b-o’)

 plot(x, sin(2*x), ’r-^’)

• Try different formatting

7

Scatter plot

• To plot some data without interpolation use scatter()
function:

 scatter(x, sin(x))

8

Multiple figures

• If you want to display more than one plot at the same time
you need to create separate objects called figure():

 t = linspace(0, 2*pi, 50)

 x = sin(t)

 y = cos(t)

 fig1 = figure() window pops out

 plot(x) plot appears in window

 fig2 = figure() new window pops out

 plot(y) plot appears in new window

9

Subplot

• subplot() function is used to show multiple plots in single
window. Plots can be situated in rows or columns, or both.
First parameter of subplot() is how many rows your window
will display, second – how many columns and third one shows
which plot will be active at the time:

 a= array([1, 2, 3, 2, 1])

 b = array([1, 3, 2, 3, 1])

 subplot (2, 1, 1) window pops out, draws first raw

 plot(a) display plot in first raw

 subplot(2, 1, 2) draws second raw

 plot (b) display plot in second raw

10

Legend

• To add a legend to your plots type:

 plot (x, label=‘sin’)

 plot (y, label=‘cos’)

 legend()

• Or

 plot(x)

 plot(y)

 legend([‘sin’, ’cos’])

11

Title and axis labels

 plot(x)

 xlabel (‘radians’)

 ylabel(‘amplitude’)

 title (‘Sin’)

12

Clearing and closing plots

• Few commends to manage windows with plots:

 clf() clears current figure

 close() close currently active plot window

 close(‘all’) close all plot windows

• If you want to display plots from your script you must type
show() at the end

13

Histogram

• randn() return samples from the „standard normal”
distribution. Lets try to view a histogram of that array:

 hist(randn(10))

 hist(randn(100))

 hist(randn(1000))

• Default number of bins in hist() function is 10. Try more:

 hist(randn(1000), 20)

 hist(randn(1000), 30)

14

Arrays

• Now we will learn some basic functions of arrays

 a = array([0, 1, 2, 3]) b=zeros((3,5)), c=ones((3,5,2))

 type(a) checking type of array

 a.dtype checking numeric type of elements

 a.itemsize show number of bytes per element

 a.shape returns a tuple listing the length of the
 array long each dimension

 a.size reports the entire number of elements

 a.ndim return number of dimensions

 a.nbytes return bytes number stored in memory

15

Arrays

• Changing element of array is similar like in list:

 a[0] = 10

• Filling whole array with some value

 a.fill(0)

• Second way also works but may be slower with large arrays:

 a[:] = 1

• Slicing an array is the same like slicing a list

16

Multi-Dimensional arrays

• Create two dimensional array:

 a = array([[0, 1, 2, 3], [10, 11, 12, 13]])

• Check a.shape, a.size, a.ndim

• Our array has two rows and four columns. To get or set an
element you need to address which raw and column is he at.
For example lets check element in second raw and forth
column(numeration goes from 0),or whole second raw:

 a[1,3] a[1]

• Now replace value:

 a[1,3] = -1

• Check if that worked

17

Multi-Dimensional slicing

 a[0, 3:5]

 a[4:, 4:]

 a[:, 2]

 a[2::2, ::2]

18

Slices are references

• Slices are references to memory in the original array.
Changing values in a slice also changes the original array:

 a = array((0, 1, 2, 3, 4))

 b = a[2:4]

 b[0] = 10

• Now check a array for changes

19

Fancy indexing

• Instead of slicing you can also use some list which will have
desired indexes you want to copy:

 a = arange(0,80,10)

 list = [1, 2, -3]

 b = a[list]

• Another way is to create mask as an array:

 mask = ([0, 1, 1, 0, 0, 1, 0, 0],dtype = bool)

 b = a[mask]

• Unlike slicing, fancy indexing creates copies instead of a view
into original array

20

Fancy indexing

 a[(0, 1, 2, 3, 4), (1, 2, 3, 4, 5)]

 a[3:, [0, 2, 5])

 mask=array([1, 0, 1, 0, 0, 1],

 dtype=bool)

 a[mask, 2]

21

Where

• Another way to slice an array is condition. Type:

 a = array([0, 12, 5, 20])

 a > 10

• It will return array of the same size, but with boolean type.
True if condition is fulfilled and false if it’s not. If you want to
receive tuple with only values higher than 10, type:

 where(a>10)

22

Newaxis

• newaxis is a special index that inserts a new axis in the array
at the specified direction. Each newaxis increases array’s
dimensionality by 1:

 a = array([0, 1, 2])

 shape(a)

• Try different axis adding and check shape(y) after each one:

 y = a[newaxis, :] (1x3)

 y = a[:, newaxis] (3x1)

 y = a[:, newaxis, newaxis] (3x1x1)

23

Flattening arrays

• a.flatten() converts a multi-dimensional array into a 1-D array.
The new array is a copy of the original data. Create a 2-D
array:, and check b value:

 a = array ([[0, 1], [2, 3]])

 b = a.flatten()

• Changing b does not change a

• a.flat is an attribute that returns an iterator object that
accesses the data in the M-D array data as a 1-D array. It
references the original memory. Try:

 a.flat[:]

 and check a value

24

Changing shape

• a.shape method used with parameters can change shape of
an array it reshapes array in place:

 a = arange(6)

 a.shape

 a.shape = (2, 3)

 a.shape

• reshape will return a new array with a different shape:

 a.reshape(3, 2)

• Reshape cannot change the number of elements in an array

25

Transpose

• Transpose swaps the order of axes. For 2-D this swaps rows
and columns:

 a = arange(6)

 a.shape

• Now to transpose array use transpose() method:

 a.transpose()

 a.shape

• Or as a shortcut:

 a.T()

 a.shape

26

Squeeze

• squeeze removes any dimension with length == 1. To see how
it works, first create an array and insert an „extra” dimension
in it:

 a = array([[1, 2, 3, 4, 5, 6]])

 a.shape

 a.shape = (2, 1, 3)

• now to remove that „extra” dimension, type:

 a = a.squeeze()

 a.shape

27

Diagonals

• Thanks to diagonal() you can extract diagonal from an array:

 a = array ([[11, 21, 31], [12, 22, 32], [13, 23, 33]])

 a.diagonal ()

• You can also use offset to move off the main diagonal:

 a.diagonal (offset = 1)

 a.diagonal (offset = -1)

28

Sum

• Summing arrays can be done by function or method. Both
ways work the same. Create an array and sum all elements:

 a = array([[1, 2, 3, 4, 5, 6]])

 sum(a) or a.sum()

• To sum array by columns - type:

 sum(a, axis = 0) or a.sum(axis = 0)

• To sum arrays by rows - type:

 sum(a, axis = -1) or a.sum(axis = -1)

• In similar way you can calculate product:

 prod(a, axis = 0) or a.prod(axis = 0)

29

Min/Max

• Similar to sum() and product() you can calculate minimum
and maximum value or it’s index in an array:

 amin(a, axis = 0) or a.min(axis = 0)

 amax(a, axis = 0) or a.max(axis = 0)

• There are also Python’s build-in functions min() and max() but
they are slower when performed on multi-dimensional arrays

• To find index of maximum or minimum value - type:

 argmin(a, axis = 0) or a.argmin(axis = 0)

 argmax(a, axis = 0) or a.argmax(axis = 0)

30

Statistics

• mean value:

 mean(a, axis = 0) or a.mean(axis = 0)

• average() does the same thing, but when used with weighs,
can calculated a weighted average:

 average(a, weights = [1, 2], axis = 0)

• standard deviation:

 a.std(axis = 0)

• variance:

 var(a, axis = 0) or a.var(axis = 0)

31

Other methods

• clip method allows you to limit values in an array to a range:

 a.clip(3, 5)

• this line will change values > 3 equal to 3, and values > 5 to 5

• round method rounds vales in an array. NumPy rounds to
even value. You can also use it with decimals parameter

 a = array([1.35, 2.5, 1.5])

 a.round()

 a.round(decimals = 1)

• ptp (peak to peak)method will calculate max – min value
along axis:

 a.ptp(axis = 0)

32

Image display

• To show image in new window use imshow() function. First
lets import example image from SciPy(famous Lena image):

 from scipy.misc import lena

 img = lena()

 imshow (img)

• You can also add some parameters to imshow(). Change color
map(if image is in grayscale use cm.gray). Values in arrays can
also be changed by using extent parameter:

 imshow(img,extent=[-25, 25, -25, 25], cmap=cm.gray)

• And add a color bar:

 colorbar()

33

Signal module

• To process an image - import signal module from SciPy:

 from scipy.misc import lena

 from scipy import signal

• now we will create an object to store image(it needs to be
float 32 because many filters require it):

 lena = lena().astype(float32)

 im.show(lena, cmap = cm.gray)

• to see what filters you can use from signal module - type
signal. and then hit TAB key

• to see filter description (for example gaussian filter) type:

 help (signal.gaussian)

34

Median filter

• Blur the image by using median filter:

 median = signal.medfilt2d (lena, [15, 15])

 imshow(median, cmap = cmgray)

• signal.medfilt2d takes size of mask as an second parameter

35

Noise removal

• Lets add and some noise to lena image. First we will need
stats module from scipy. After that we will use wiener filter:

 from scipy.stats import norm

 lena_noise = lena + norm(0,32) .rvs(lena.shape)

 imshow (lena_noise, cmap = cm.gray)

 cleaned = signal.wiener(lena_noise)

 imshow (cleaned, cmap = cm.gray)

36

Ndimage module

• Another powerful module which contains many filters useful
in image processing is ndimage.

• In this module you can find ordinary filters, fourier filters,
interpolation, measurements and morphology.

• If you want to get access to all those methods simply type:

 from scipy.ndimage import *

• To see detailed list of filters go to
http://docs.scipy.org/doc/scipy/reference/ndimage.html

37

http://docs.scipy.org/doc/scipy/reference/ndimage.html

Edge detection

• Import sobel filter from:

 from scipy.ndimage.filters import sobel

• Create an object to sobel filter and show images:

 imshow (lena, cmap = cm.gray)

 edges = sobel(lena)

 imshow (edges, cmpa = cm.gray)

38

Image module

• The Image module provides a class with the same name
which is used to represent a PIL image. The module also
provides a number of factory functions, including functions to
load images from files, and to create new images.

• To import module type :

 import Image

• and after that type

 Image.

• And hit TAB key. You can find here alternative way for opening
images and different ways of interpolation

39

