
A GPU Accelerated Local Polynomial
Approximation Algorithm for Efficient
Denoising of MR Images

Artur Klepaczko

Abstract This paper presents a parallelized implementation of the Lo-
cal Polynomial Approximation algorithm targetted at CUDA-enabled GPU
hardware. Although the application area of LPA in the image processing
domain is very wide, here the focus is put on magnetic resonance image de-
noising. In this case, LPA serves as a pre-processing step in the method based
on Shape-Adaptive Discrete Cosine Transform. It is shown, how the designed
efficient implementation of LPA substantially reduces the execution time of
SA-DCT.

1 Introduction

The problem of noise removal from MR images has been extensively studied
and variety of effective solutions were already proposed. It is an important
problem while noise-free images can largely improve correctness of medical di-
agnosis based both on qualitative assessment as well as automatic computer-
aided pattern recognition tools (segmentation, classification). Typically, the
signal-to-noise ratio in real images results from the trade-off between acqui-
sition speed, resolution, scanner field strength. The sources of noise in MR
are multifold, including thermal phenomena, inductive losses, or sampling
frequency.

A common assumption underlying majority of approaches derives from the
observation that noise signal in magnitude MR images can be modeled by
the Rician distribution [9]. Furthermore, it can be shown, that in the case of
high SNR, distribution of noise approaches the Gaussian model. Therefore,
the most straightforward techniques applied to MR image denoising are based
on Gaussian or Wiener filters. Another approach involves restoration based

Lodz University of Technology, Institute of Electronics, ul. Wolczanska 211/215, 90-924
Lodz aklepaczko@p.lodz.pl

1



2 Artur Klepaczko

Fig. 1 Example pixels neighborhood masks determined by the LPA algorithm. Masks
are adjusted to true local image contents while noise-associated intensity fluctuations are
tolerated.

on non-linear optimization of an image modeled as a Markov random field
[4]. However, these methods usually fail leading to over-smoothed and blurred
images, corrupted also by edge-related artifacts.

Therefore, the more sophisticated techniques either apply Rician model
without its simplification (e.g. joint geometric-, radiometric-, and median-
metric filter [2], Median Absolute Deviation estimator or Nonlocal Maximum
Likelihood [5, 3]) or—although assume the noise to be normally distributed—
operate on voxels neighborhoods adapted to fine details of visualized struc-
tures, thus making noise removal more robust to blurring and over-smoothing
problems. In this paper we focus on one such method, namely the Shape-
Adaptive Discrete Cosine Transform (SA-DCT)[6]. As a first step, SA-DCT
determines homogeneous local neighborhoods of every image voxel using Lo-
cal Polynomial Approximation algorithm. The neighborhoods are finely ad-
justed to shape and size of local image contents (cf. Fig. 1). However, deter-
mination of local neighborhoods for every voxel involves significant computa-
tional overhead. Application of LPA to high-resolution 3D MR images occurs
inefficient. Thus, in this paper parallelized GPU-accelerated implementation
of LPA is proposed, so that noise can be removed from MR data not only
effectively, but also efficiently.

2 Local Polynomial Approximation

The LPA algorithm is a technique of non-parametric regression adopted in
various image processing applications[7, 1]. Using low order polynomial func-
tion, LPA models a non-linear relationship between an independent variable
X and a dependent variable Y . Data are fitted to a modeled polynomial func-
tion within a sliding window positioned at subsequent observations (X,Y ) –



A GPU Accelerated Local Polynomial Approximation Algorithm. . . 3

µ
(1)

D1

µ
(2)

D2

µ
(3)

D3

µ
(4)

D4

µ
(1)

D1

µ
(2)

D2

µ
(3)

D3

µ
(4)

D4

(a) (b)

Fig. 2 Distinct directions θi, i = 1..8 used in LPA filtering (a) and the illustration of the
Intersection of Confidence Intervals rule for hmax = 3 (b).

e.g. measured values of a sampled signal. In a window, a signal is convolved
with a kernel function of a known form. This enables estimating values of Y
in the neighborhood of a given data point X . Window size h is a key param-
eter of the method. It is defined as a number of data samples beyond which
it becomes impossible to estimate signal Y basing on values measured in the
proximal neighborhood of X .

In this study the 3D image is considered as a stack of flat slices and thus
a 2D variant of LPA algorithm is applied. Then, each pixel neighborhood is
filtered in 8 distinct directions, as illustrated in Fig. 2a. For a given pixel X ,
the filtered value µ is calculated as

µ(h) =

h
∑

j=1

g
(h)
j I(X + (j − 1)θi), (1)

where g(h) is a discrete convolution kernel of scale h (window size), g
(h)
j with

j = 1, . . . , h denote kernel weights which sum to unity and decrease with the
increasing distance from a center pixel X . The exact procedure of weights
generation is described in [7]. I is a 2D matrix of image intensity values.

Adjusting the window size to local image contents is performed using the
intersection of confidence intervals (ICI) rule. The idea is to test several
values of scale h, i.e. h ∈ {h1 . . . , hk} and h1 < h2 < . . . < hk and for each of
them evalute (1) as well as local standard deviation value

σµ(h) = σ‖g(h)‖, (2)

where σ is the global standard deviation determined for the whole image.
Then for each direction θi and scale h one calculates confidence intervals

Dh = [µ(h) − Γσµ(h) , µ(h) + Γσµ(h) ], (3)



4 Artur Klepaczko

in which Γ > 0 denotes a global parameter that allows controlling noise
tolerance. The lower Γ , the stronger requirement for local homogeneity is,
and thus fewer pixels are included in the resulting neighborhood volumes. The
ICI rule states that for each direction one should choose a maximum value
of h that ensures nonempty intersection of all previous confidence intervals,
i.e. (cf. Fig. 2b)

hmax,i = max
h∈{h1,...,hk}

{h : (D1 ∩ D2 ∩ · · · ∩ Dh) 6= ∅}. (4)

In this study it is arbitrarily set h ∈ {1, 2, 3, 5, 7, 8}, hence the upper bound
for the window size in any direction amounts to 8 pixels. On completion, pixels
determined by relations X+hmax,iθi constitute a set of a hull vertices whose
interior determines a locally adapted volume of interest of X .

3 GPU-based implementation of LPA

One of the most important features of the CUDA technology is the separation
of the code layer from the GPU hardware, allowing seamless execution of
the same binaries on different devices. However there are some hardware-
related details specific to various generations of Nvidia’s products and thus
it should be noted, that this study targets the Fermi architecture (GF116 in
particular). Below the designed implementation is presented in 3 variations,
starting from the most strightforward solution. Then, additional optimization
mechanisms are introduced to improve ultimate efficiency. The presentation
is preceded by recalling basic configuration issues common to any CUDA
project.

3.1 The execution configuration

The CUDA programming model assumes problem decomposition into a series
of threads, each executing the same operation—called a kernel—on different
portions of data. CUDA threads have to be organized in blocks, and then
blocks of threads build up a grid. The total number of threads has to comply
with the problem size, i.e. every data element (an image pixel) is assigned
its own corresponding thread. The grid organization into blocks of threads is
referred to as execution configuration and it is important to properly adjust it
in order to achieve the maximal utilization of GPU hardware resources. All
CUDA-enabled processors are composed of the Streaming Multiprocessors
(SM). In the Fermi architectures a SM can be assigned at most 8 blocks or
1536 threads at a time. Therefore, too large (e.g. 32 × 32 threads) or too
small (e.g. 8 × 8) blocks results in poorer utilization of computational logic



A GPU Accelerated Local Polynomial Approximation Algorithm. . . 5

and potential loss in performance. Percentage of threads actually assigned to
a SM in relation to maximum possible number of threads per SM is called
the occupancy ratio.

Beside execution configuration, there are other factors which may cause
occupancy to be lower than optimal 100%. These relate mainly to mem-
ory resources. In CUDA there are four major types of memory. The fastest
accessible are per-thread registers. They are used mainly for storing scalar
variables declared in a kernel scope. In GF116 there is a limit of 32K of
32-bit registers per multiprocessor. Thus, if a SM is assigned a total num-
ber of 1536 threads, no more than 21 registers are available for a thread. It
may however be beneficial to speed up kernel execution by extensive usage
of registers at the cost of occupancy. Secondly, each thread can access its
own local memory area (of 512 KB size), which is however a long-latency,
off-chip storage. The third memory option is 48KB of shared memory to be
distributed among blocks in a SM. Similarly to registers, it is zero-overhead
memory but its over-utilization by a block may result in degraded occupancy.
Eventually, global memory is a large capacity data storage, available to all
threads in a grid throughout the whole application lifetime. However, it is
again, an off-chip long latency storage.

Taking into account the above considerations, the following configuration
is used in the proposed design. The block size is set to 16 × 16. This gives
256 threads per block and allows 6 blocks to simultaneously reside in SM.
The grid size is adjusted to match the processed image. For an image of size
256×256 pixels, the grid dimension will be 16×16. In this configuration, the
amount of shared memory per block is limited to 8KB (if 100% occupancy
is to be maintained). The number of registers per kernel is kept equal to 21
(it can be fixed at compile time), however it could be tuned to improve final
performance.

3.2 The basic kernel

The first step of LPA is to estimate global standard deviation σ of noise in
an input image. This can be accomplished relatively fast in a single CPU
thread. Then, the CPU part of the program (the host) transfers image data
to the the GPU global memory and executes kernel in a grid of threads,
where every thread evaluates equations (1) to (4) in its own dedicated pixel
X . Thus, the kernel has to begin with identifying its pixel coordinates and
proceeds as shown in Fig. 3. Note, that in this basic implementation the
thread must read global memory in step 4 at least 9 times—to fetch its pixel
and the nearest neighbors intensity values. In the worst case, where the ICI
rule holds for the most distal pixels in all 8 directions, the number of global
memory transactions in step 4 reaches value of 65 which can cause significant
computational overhead.



6 Artur Klepaczko

1 . Determine p i x e l c oo r d i an t e s based on thread and block ID
numbers and dimens ions .

2 . For each d i r e c t i o n θi, i = 1, .., 8
3 . For each s c a l e hj ∈ h1, ..hk

4 . Ca l cu l ate µh accord ing to (1)
5 . Ca l cu l ate σ

µ(h) accord ing to (2)

6 . Ca l cu l ate Dhj
accord ing to (3)

7 . I f the ICI r u l e (eq. (4)) holds f o r Dhj

8 . go to s tep 4 .
9 . e l s e break
10 . Store s c a l e hi

j
f o r d i r e c t i o n θi and go to s tep 2 .

Fig. 3 Pseudo code of the basic CUDA implementation of the LPA algorithm

3.3 Shared memory

Shared memory can be used to reduce the extensive traffic between GPU
and off-chip global memory, in which many transfers concern the same data.
Note that adjacent pixel neighborhoods investigate partially the same image
region. For example, two pixels which differ only on horizontal coordinate by
one require—in direction θ1 = 0◦—analysis of an image row whose size is 10
pixels long, 8 of which must be read by both GPU threads in the basic kernel
(see Fig. 4)a. For the whole 16 × 16 threads block a common image region
is 32 × 32 pixels large. This region can be efficiently loaded in 4 stages into
shared memory space (cf. Fig. 4b).

In every stage, a subregion of size 16 × 16 pixels is retrieved. The subre-
gions are shifted relative to an image region associated to a thread-block. For
example, in the case of subregion I, a thread reads a pixel intensity which is
located 8 points to the left and 8 points above this thread dedicated pixel. Af-
ter requests for the last subregion data are sent to global memory, there must
be a synchronization barrier set so that transfers scheduled by all threads in
a block complete before computations begin. Finally, a kernel proceeds from
step 2 in the algorithm listed in Fig. 3. This time however, data requests
induced in step 4 refer to shared and not global memory. In this way, there
are only 4 instead of maximally 65 global memory reads.

Note, that the amount of shared memory that must be allocated for the
region of size 32×32 is 4kB if the image pixels are described by 32-bit floating
point numbers (the usual data type of MRI images). This volume fits the limit
of 8kB per block determined by the execution configuration.



A GPU Accelerated Local Polynomial Approximation Algorithm. . . 7

θ1 = 0◦

Pixel (x, y)

Pixel (x+ 1, y)
Shared image data

Threads block pixels

Region size: 16× 16

Shared image region size: 32× 32

16 pixels

8 pixels

1
6
p
ix
e
ls

8
p
ix
e
ls

I II

III IV

(a) (b)

Fig. 4 Shared image data for two adjacent pixels in direction θ1 = 0◦ (a) and for the
whole thread block (b).

3.4 Increased thread responsibility

Additional mechanism allowing to improve kernel performance is to re-use
the data once they are loaded from global memory. One can notice that an
image region loaded into shared memory as shown in Fig. 4 already contains
a substantial portion of information needed to calculate LPA masks for one
of the neighboring thread blocks. Thus, to make profit of data re-use, every
thread can be made responsible for two image pixels. This requires allocation
of 6kB of shared memory space covering an image region of size 32 × 48
pixels. Hence, there are only 2 additional global memory reads (50% more)
for a thread while the number of LPA masks calculated in a kernel doubles.
The execution time of a single thread grows, but the number of threads
that neeeds to be invoked reduces by half and this leads to considerable
performance boost as reported in the next section.

4 Experiments

Efficiency of the proposed implementation was tested in a series of experi-
ments performed on 10 2D simulated brain MR magnitude images[8]. Width
and height of 2D slices—originally 181 × 217 pixels—were zero-padded to
match the size of 256 × 256 pixels. One half of images was degraded by
additive Gaussian noise of zero mean and variable standard deviation, i.e.



8 Artur Klepaczko

σ = 0.01, 0.03, 0.05, 0.07 and 0.15. The other half was corrupted with the
Rician noise modeled as

p(m|X) =
m

σ2
exp−(m2+X2)/2σ2

I0

(

Xm

σ2

)

(5)

where m denotes corrupted image pixel, X is the noise-free intensity of the
pixel, and σ is the standard deviation of the underlying normally-distributed
noise, which—in real conditions—adds to raw complex MR data. After
Fourier transform of k-space, these data become Rician-distributed. Thus,
in order to obtain noisy image from simulated brain phantom the following
equation was applied to every image pixel

m =
√

A2 +B2, (6)

where A ∼ N
(

X · cos (a), s2
)

and B ∼ N
(

X · sin (a), s2
)

are independent
normal distributions (any real a). The parameter s can be treated as noise

level, which in the conducted experiments was set to s = {1, 2, 3, 4, 5}. Mea-
surements presented below are the average estimates obtained for all tested
images. Fig. 5 presents example 2D images corrupted with Gaussian and
Rician noise along with a sample result of noise-removal procedure accom-
plished using the designed implementation of LPA algorithm as part of the
SA-DCT method.

The GPU code was run on the GF116-compliant GeForce GTX 560M chip.
Since the graphics processor used in the experiments is targeted at mobile
devices, also the CPU chip chosen for tests was a mobile variant of the Intel
Core i7 (i7-2630QM). Time records viewed in Table 1 were measured using
the CUDA Event API.

5 Results discussion and conclusions

Analysis of the obtained results shows superior performance of the GPU
accelerated implementation of LPA over an analogous program run on CPU.
In the latter case though, the time was measured for a single CPU thread.
However, even if the score was divided by a factor of 8 (theoretical number
of threads which can be simultaneously executed on i7 processor), GPU code

Table 1 Execution times of LPA kernels [ms] under various implementation designs

CPU Basic Shared Shared×2

Host-to-device data transfer N/A 0.81
LPA kernel 721.0 2.34 2.03 1.73
Device-to-host data transfer N/A 4.53



A GPU Accelerated Local Polynomial Approximation Algorithm. . . 9

(a) (b)

(c) (d)

Fig. 5 Example 2D slice of synthetic brain image: (a) noise-free, (b) corrupted with Gaus-
sian noise (σ = 0.15), (c) corrupted with Rician noise (s = 5), (d) denoised image (b).

runs on average and depending on the implementation variant 38 to 52 times
faster. These ratios scale down to 11.7 and 12.7 if host-to-device and device-
to-host data transfers are taken into account.

Moreover, it can be noticed how usage of shared memory speeds up compu-
tations. Execution time in the implementation variant described in Sect. 3.3
is 20% lower than in the case of the basic kernel. Increased responsibility of
a kernel (this variant is denoted ’Shared×2’ in Table 1) leads to even higher
performance. Eventually, to test how the number of registers used by a thread
affects the overall efficiency, the program (version ’Shared×2’) was compiled
using variable option maxreg in the CUDA nvcc compiler. Recall that exces-
sive usage of registers—although may speed up a kernel execution—degrades
the occupancy. However, as shown in Table 2, despite lower occupancy the op-
timum for the designed implementation is 29 registers per thread. Increasing
the number of registers from 21 to 29 leads to observable improved efficiency.
This trend halts only after the occupancy drops below 70%.



10 Artur Klepaczko

Table 2 Execution times of LPA kernels vs. number of registers used by a thread

No. of registers 21 23 25 27 29 31
Execution time [ms] 1.73 1.68 1.65 1.63 1.62 1.65
Occupancy [%] 100 92 85 79 73 69

To conclude, it must be underlined that the designed GPU-based im-
plementation of the LPA algorithm performs very efficiently. Accomplished
within a timeframe reduced to miliseconds, generation of LPA masks no
longer entails any significant computational load to SA-DCT-based noise re-
moval method.

Acknowledgements

This paper was supported by the Polish National Science Centre grant no.
N N519 650940.

References

1. Bergmann, Ø., Christiansen, O., Lie, J., Lundervold, A. (2009) J. Digital Imaging
22(3):297–308

2. Chang, H.H. (2011) Rician noise removal in MR images using an adaptive trilateral fil-
ter. In: Proc. Biomedical Engineering and Informatics (BMEI), 2011 4th International
Conference on, 467–471

3. Coupé, P., Manjón, J., Gedamu, E., Arnold, D., Robles, M., Collins, D.L. (2010)
Medical Image Analysis 14(4):483–493

4. Garnier, S.J., Bilbro, G.L., Snyder, W.E., Gault, J.W. (1994) J. Digit. Imaging,
7(4):183–188

5. He, L., Greenshields, I.R. (2009) IEEE Trans. Medical Imaging 28(2):165–172
6. Katkovnik, V., Egiazarian, K., Astola, J. (2002) J. Math. Imaging and Vision 16:223–

235
7. Katkovnik, V., Egiazarian, K., Astola, J. (2006) Local Approximation Techniques in

Signal and Image Processing. SPIE Press
8. Kwan, R.S., Evans, A., Pike, G. (1999) IEEE Trans. Medical Imaging 11:1085–97
9. Sijbers, J., Dekker, J.d., Audekerke, J.V., Verhoye, M., Dyck, D.V. (1998) Magnetic

Resonance Imaging 16(1):87–90


	A GPU Accelerated Local Polynomial Approximation Algorithm for Efficient Denoising of MR Images
	Artur Klepaczko
	Introduction
	Local Polynomial Approximation
	GPU-based implementation of LPA
	The execution configuration
	The basic kernel
	Shared memory
	Increased thread responsibility

	Experiments
	Results discussion and conclusions
	References



